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Why jets

4

A jet is something that happens 
in high energy events: 

a collimated bunch of hadrons flying 
roughly in the same direction

Note: hundreds of hadrons 
contain a lot of information. 
More than we can hope to 

make use of
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Why jets
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Often you don’t need a 
fancy algorithm to ‘see’ the jets

But you do to give them a 
precise and quantitative 

meaning
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Why jets

6

Jets are usually  related to an 
underlying perturbative dynamics 

(i.e. quarks and gluons)
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The purpose of a ‘jet clustering’ algorithm is then to
reduce the complexity of the final state, simplifying many 

hadrons to simpler objects that one can hope to calculate

Why jets

6

Jets are usually  related to an 
underlying perturbative dynamics 

(i.e. quarks and gluons)
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Jet algorithm
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{pi} {jk}
jet algorithm

particles,
4-momenta,

calorimeter towers, ....

jets

A jet algorithm maps the momenta of the final state particles 
into the momenta of a certain number of jets:

Most algorithms contain a resolution parameter, R, 
which controls the extension of the jet

(more about this later on)
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Two main classes of jet algorithms
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Sequential recombination algorithms
bottom-up approach: combine particles starting from closest ones 

How? Choose a distance measure, iterate recombination 
until few objects left, call them jets
Work because of mapping closeness ⇔ QCD divergence
Examples: Jade, kt, Cambridge/Aachen, anti-kt, …..
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Two main classes of jet algorithms

8

Sequential recombination algorithms
bottom-up approach: combine particles starting from closest ones 

How? Choose a distance measure, iterate recombination 
until few objects left, call them jets
Work because of mapping closeness ⇔ QCD divergence
Examples: Jade, kt, Cambridge/Aachen, anti-kt, …..

Cone algorithms
top-down approach: find coarse regions of energy flow. 

How? Find stable cones (i.e. their axis coincides with sum of momenta of particles in it)

Work because QCD only modifies energy flow on small scales
Examples: JetClu, MidPoint,  ATLAS cone, CMS cone, …...
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Cone algorithms

9

The first rigorous definition of cone jets in QCD is due to Sterman and Weinberg
Phys. Rev. Lett. 39, 1436 (1977)

Good for 2 jets and e+e- collisions

In more general cases, where do we place the cones? How many?
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Finding cones

10

Different procedures for placing the cones lead to different cone algorithms

NB: their properties and behaviour can vastly differ:
there isn’t ‘a’ cone algorithm, but rather many of them

 Fixed cone with progressive removal (FC-PR) (PyJet, CellJet, GetJet)

 Iterative cone with progressive removal (IC-PR) (CMS iterative cone)

 Iterative cone with split-merge (IC-SM) (JetClu, ATLAS cone)

 IC-SM with mid-points (ICmp-SM) (CDF MidPoint, D0 Run II)

 ICmp with split-drop (ICmp-SD) (PxCone)

 Seedless cone with split-merge (SC-SM) (SISCone)

The main sub-categories of cone algorithms are:
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Fixed Cone, Progressive Removal (FC-PR)

11
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Fixed Cone, Progressive Removal (FC-PR)
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Fixed Cone, Progressive Removal (FC-PR)
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Fixed Cone, Progressive Removal (FC-PR)
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Fixed Cone, Progressive Removal (FC-PR)
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Fixed Cone, Progressive Removal (FC-PR)
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Fixed Cone, Progressive Removal (FC-PR)
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Fixed Cone, Progressive Removal (FC-PR)
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Fixed Cone, Progressive Removal (FC-PR)
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Fixed Cone, Progressive Removal (FC-PR)
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Probably the simplest 
cone algorithm

Choose hardest particle as seed

Draw cone around it

Call it a jet, remove 
                       constituents from set of particles

Repeat using hardest particle left

Etc, etc

Until no particles left
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FC-PR v. IC-PR

21

Seed and cone axis may not coincide. 
Making them do can lead to different jets
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Begin with hardest particle as seed

Cluster particles into cone if ΔR < R

Iterate until stable (i.e. axis coincide with sum of momenta) cones found 

Eliminate constituents of jet and start over from hardest remaining 
particle

FC-PR v. IC-PR

22

Seed and cone axis may not coincide. 
Making them do can lead to different jets

Let us try an Iterative Cone with Progressive Removal (IC-PR)  
(e.g. the CMS Iterative Cone)
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FC-PR v. IC-PR
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FC-PR v. IC-PR
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FC-PR v. IC-PR
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FC-PR v. IC-PR
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FC-PR v. IC-PR

27

Choose hardest particle as seed

Draw cone around it

Jet axis not centred on seed

Redraw cone around new axis

60

50

40

20

0
0 1 2 3 4 y

30

10

pt/GeV sum of momenta != seed

Still, jet axis not centred on seed



Matteo Cacciari - LPTHE MCnet School - Lund - July 2009

FC-PR v. IC-PR
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FC-PR v. IC-PR
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This jet differs from the corresponding FC-PR one
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IC-PR cone collinear unsafety

30

A collinear splitting can change the final state

First
seed
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IC-PR cone collinear unsafety

30

A collinear splitting can change the final state

First
seed First

seed

Splitting the hardest particle collinearly has
changed the number of final jets
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Consequences of collinear unsafety

31

In QCD perturbation theory, virtual and real configurations 
can only cancel if they lead to the same final state

In this example with IC-PR, we have seen that the final state can differ:

⇒ no cancellation of divergencies, no convergence of perturbation theory

Jet algorithms using hardest particles as seeds will 
generally be susceptible to collinear unsafety
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Iterative Cone with Split-Merge  (IC-SM)

32

Use all particles as seed

Cluster particles into cone if ΔR < R

Iterate until stable (i.e. axis coincide with sum of momenta) cones found 

Split-merge step (see later on)

Choosing hardest particles as seed was an issue (collinear unsafety). 
Let us therefore try taking all particles

Examples of this algorithm are JetClu and the ATLAS Cone
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IC-SM

33
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Iterating the cones over all particles as seeds returns 5 stable protojets

protojets

The lack of ‘progressive removal’ means 
that some protojets can be overlapping 

(i.e. contain the same particles). 
Must deal with this: split-merge
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Split-Merge

34

‘Split-merge’ is a further algorithm aimed at disentangling overlapping protojets.

The Tevatron Run II implementation goes like this:

Choose an overlap threshold f

Find hardest protojet

Find hardest other protojet overlapping with it 

Merge is they share a fraction of momentum larger than f, split 
along axis at centre otherwise

(Call protojet a jet if there are no overlapping protojets)
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MidPoint (ICmp-SM) infrared unsafety

36
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Three hard particles clustered into 
two cones by the MidPoint algorithm

Addition of a soft particle changes the hard jets: 
three stable cones are now found

The problem is that the stable-cone search procedure used by 
seeded IC algorithms often cannot find all possible stable cones

MidPoint fixes the two-particle configuration IR-safety problem by 
adding midpoints to list of seeds. 

But this merely shifts the problem to three-particle configurations
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A long list of cones (all eventually unsafe)

37

IC = Iterative Cone
SM = Split-Merge
SD = Split-Drop
FC = Fixed Cone
PR = Progressive Removal

type of 
algorithm

Les Houches 2007 proceedings, arXiv:0803.0678

safety issue

IRn+1 : unsafe when a soft particle is added to 

n hard particles in a common neighbourhood

Colln+1 : unsafe when one of n hard particles in 

a common neighbourhood is split collinearly
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IRC safety does matter

38

The best cones seen so far fail at (3+1) partons, others already at (2+1)

Calculations cost real money:   ~ 100 theorists ×15 years ≈100 M€

Using unsafe jet tools essentially renders them useless
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IRC safety in real life

39

Strictly speaking, one needs IRC safety not so much to find jets, 
but to be able to calculate them in pQCD

If you are not interested in thory/data comparisons, you may 
think of doing well enough with an IRC-unsafe jet algorithm

However

Detectors may split/merge collinear particles, and be poorly 
understood for soft ones

 High luminosity (or heavy ions collisions) add a lot of soft 
particles to hard event

IRC safety provides resiliency to such effects
(plus, at some point in the future you may wish to compare 

your measurement to a calculation)



Matteo Cacciari - LPTHE MCnet School - Lund - July 2009

Seedless IRC-safe Cone (SC-SM): SISCone

40

The first (and only?) IRC-safe cone algorithm for hadronic collisions

Seeds are a problem: 
they lead to finding only some of the stable cones

Obvious solution:
find ALL stable cones, testing all possible combinations of N particles

Unfortunately, this takes N2N operations:
the age of the universe for only 100 particles

Way out: a geometrical solution → SISCone

Salam, Soyez, arXiv:0704:0292
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SISCone

41
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Key innovation: circular enclosures

In 1-dim: slide a ‘cone’ along the axis
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SISCone
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Key innovation: circular enclosures
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SISCone

43

Key innovation: circular enclosures

In 1-dim: slide a ‘cone’ along the axis
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SISCone
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Key innovation: circular enclosures

In 1-dim: slide a ‘cone’ along the axis

Check stability: OK. New protojet
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SISCone

45
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SISCone
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SISCone

47
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SISCone

48

Key innovation: circular enclosures

In 1-dim: slide a ‘cone’ along the axis

Check stability: OK. New protojet

Move on: first particle on edge:
                                new enclosure

Unstable. Keep going

60

50

40

20

0
0 1 2 3 4 y

30

10

pt/GeV Next cone edge on particle



Matteo Cacciari - LPTHE MCnet School - Lund - July 2009

SISCone
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SISCone

50
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SISCone
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SISCone
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SISCone
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SISCone
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SISCone
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SISCone
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SISCone
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SISCone

61

Key innovation: circular enclosures

In 1-dim: slide a ‘cone’ along the axis

Check stability: OK. New protojet

Move on: first particle on edge:
                                new enclosure

Unstable. Keep going

Etc, etc

Found another stable one

60

50

40

20

0
0 1 2 3 4 y

30

10

pt/GeV

And finally we get to this



Matteo Cacciari - LPTHE MCnet School - Lund - July 2009

SISCone v. IC-SM

62
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SISCone v. IC-SM
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?
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Cones Infrared (un)safety

63

Q: How often are the hard jets changed by the addition of a soft particle?

A:

badgood
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Recombination algorithms

64

 Calculate the distances between the particles: dij 

 Calculate the beam distances: diB

 Combine particles with smallest distance or, if diB is smallest, 
call it a jet

 Find again smallest distance and repeat procedure until no particles 
are left

(Inclusive version)

IRC safety can usually be seen to be trivially guaranteed
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The kt algorithm and its siblings

65

One can generalise the kt distance measure:

di j =min(k2pti ,k2pt j )
Δy2+Δφ2

R2

p = 1    kt algorithm S. Catani, Y. Dokshitzer, M. Seymour and B.  Webber,  Nucl. Phys. B406 (1993)  187
S.D. Ellis and D.E. Soper,  Phys. Rev. D48 (1993) 3160

diB = k2pti
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One can generalise the kt distance measure:

di j =min(k2pti ,k2pt j )
Δy2+Δφ2

R2

p = 1    kt algorithm S. Catani, Y. Dokshitzer, M. Seymour and B.  Webber,  Nucl. Phys. B406 (1993)  187
S.D. Ellis and D.E. Soper,  Phys. Rev. D48 (1993) 3160

p = 0   Cambridge/Aachen algorithm Y. Dokshitzer, G. Leder, S.Moretti and B.  Webber,  JHEP 08 (1997) 001
M. Wobisch and T. Wengler, hep-ph/9907280

diB = k2pti
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One can generalise the kt distance measure:

di j =min(k2pti ,k2pt j )
Δy2+Δφ2

R2

p = 1    kt algorithm S. Catani, Y. Dokshitzer, M. Seymour and B.  Webber,  Nucl. Phys. B406 (1993)  187
S.D. Ellis and D.E. Soper,  Phys. Rev. D48 (1993) 3160

p = 0   Cambridge/Aachen algorithm Y. Dokshitzer, G. Leder, S.Moretti and B.  Webber,  JHEP 08 (1997) 001
M. Wobisch and T. Wengler, hep-ph/9907280

diB = k2pti

p = -1  anti-kt algorithm MC, G. Salam and G. Soyez, arXiv:0802.1189

NB: in anti-kt pairs with a hard particle will cluster first: if no other 
hard particles are close by, the algorithm will give perfect cones

Quite ironically, a sequential recombination algorithm is the ‘perfect’ cone algorithm
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The IRC safe algorithms
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kt

SR
dij = min(kti2,ktj2)ΔRij2/R2

hierarchical in rel pt

Catani et al ‘91
Ellis, Soper ‘93 NlnN

Cambridge/
Aachen

SR
dij = ΔRij

2/R2

hierarchical in angle

Dokshitzer et al ‘97
Wengler, Wobish ‘98 NlnN

anti-kt

SR
dij = min(kti-2,ktj-2)ΔRij

2/R2

gives perfectly conical hard jets

MC, Salam, Soyez ’08
(Delsart, Loch) N3/2

SISCone
Seedless iterative cone 

with split-merge
gives ‘economical’ jets

Salam, Soyez ‘07 N2lnN



Matteo Cacciari - LPTHE MCnet School - Lund - July 2009

The IRC safe algorithms

66

kt

SR
dij = min(kti2,ktj2)ΔRij2/R2

hierarchical in rel pt

Catani et al ‘91
Ellis, Soper ‘93 NlnN

Cambridge/
Aachen

SR
dij = ΔRij

2/R2

hierarchical in angle

Dokshitzer et al ‘97
Wengler, Wobish ‘98 NlnN

anti-kt

SR
dij = min(kti-2,ktj-2)ΔRij

2/R2

gives perfectly conical hard jets

MC, Salam, Soyez ’08
(Delsart, Loch) N3/2

SISCone
Seedless iterative cone 

with split-merge
gives ‘economical’ jets

Salam, Soyez ‘07 N2lnN

All are available in FastJet, http://fastjet.fr

We call these algs ‘second-generation’ ones

(As well as many IRC unsafe ones)

http://fastjet.fr
http://fastjet.fr
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kt Cam/Aa

SISCone anti-kt

67
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Replacements
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MidPoint
ATLAS Cone

JetClu

If you care about IRC safety but don’t want to stray too far from 
algorithms used so far, these are possible replacements:

SISCone

Iterative Cone (PR) anti-kt

In addition, kt and Cambridge/Aachen can provide further flexibility

Different algorithms spanning a series of different and complementary 
characteristics: should be enough for most purposes

One should probably try to concentrate on these, both for analytical 
understanding and practical use in experiments, rather than using IRC unsafe ones

(As fast,  but 
IRC safe)

(Gives regular cones too, 
but IRC safe)
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Cambridge/Aachen with filtering

69

An example of a third-generation jet algorithm

Cluster with C/A and a given R

Undo the clustering of each jet down to subjets with radius xfiltR

Retain only the nfilt hardest subjets

Butterworth, Davison, Rubin, Salam, arXiv:0802.2470

Aim: limit sensitivity to background while retaining bulk of perturbative radiation
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Jet definition
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{pi} {jk}
jet algorithm

particles,
4-momenta,

calorimeter towers, ....

jets
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+ recombination scheme
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Jet definition

70

jet definition
Les Houches 2007 proceedings, arXiv:0803.0678

{pi} {jk}
jet algorithm

particles,
4-momenta,

calorimeter towers, ....

jets

+ parameters (usually at least the radius R)

+ recombination scheme
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Which R to choose?

71

The value of R matters because it affects, 
in opposite ways, a number of things:

Small R:
Limit underlying event and pileup contamination
Better resolve many-jets events

Large R:
Limit perturbative radiation loss (‘out-of-cone’)

Limit non-perturbative hadronisation effects

The best compromise will in general 
depend on the specific observable
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R-dependent effects

72

Perturbative radiation: ∆pt !
αs(CF , CA)

π
pt lnR

∆pt !
(CF , CA)

R
× 0.4 GeV

∆pt !
R2

2
× (2.5−−15 GeV)

Hadronisation:

Underlying Event:

Analytical estimates,
Dasgupta, Magnea, Salam, arXiv:0712.3014

Tevatron LHC
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Best R
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Minimize Σ(Δpt)2

Best R Best R
Dasgupta, Magnea, Salam, arXiv:0712.3014
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Flexibility
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All IRC safe algorithms are equal, but 
some are more equal than others

Depending on the analysis you wish to perform, 
a jet definition may give better results than others
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Reconstruction of a di-jet mass peak
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To compare different algorithms, define figures of merit:

1.

2. Maximum fraction of events in window of given width:

Les Houches 2007 proceedings,  arXiv:0803:0678

Smallest width of an histogram window containing 
a fraction f=z of the generated objects, i.e.

Qw
f=z

MC, Rojo, Salam, Soyez, arXiv:0810.1304

Smaller is better
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Reconstruction of a di-jet mass peak
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Effective luminosity ratios
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Lower is 
better
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Best

Different algs, 
different R, 
different 

performances

Example of a 
‘third-generation’ 

algorithm
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quality.fastjet.fr Do it yourself
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Jet areas: the link to physics
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The definition of active area mimics the behaviour of the 
jet-clustering algorithms in the presence of a large number of 

randomly distributed soft particles

Tools needed to implement it:

1.  An infrared safe jet algorithm 

2.  A reasonably fast implementation 

This is like underlying event or pileup!

Both are available
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Jet active areas

80

The ghost can also give you a 
visual impression of the reach 

of each jet
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Background subtraction
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[MC, Salam, arXiv:0707.1378]

phard jet, correctedT = phard jet, rawT −ρ×Areahard jet

If the area of each jet, and the momentum per unit area 
of the background  are known, one can correct 

the transverse momentum of the hard jets:

When ρ is calculated on an event-by-event basis, 
this procedure will generally improve the resolution of, say, a mass peak

NB.  Also be(a)ware of backreaction 
(immersing a hard jet in a soft background may cause some particles belonging to the 

hard event to be lost from (backreaction loss) or added to (backreaction gain) the jet).
Small effect for UE, larger for pileup, can be very important for heavy ions.

Analytical understanding of this effect available (MC, Salam, Soyez, arXiv:0802:1188)
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Example of pileup subtraction
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Let’s discover a leptophobic Z’ and measure its mass:

MC simulation:
m = 2000 GeV, width ~ 10 GeV

Naive measurement with PU: 
m ~ 2050 GeV, width ~ 60 GeV

Measurement after subtraction:
m ~ 2000 GeV, width ~ 25 GeV
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Effect of UE subtraction
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Effect of UE subtraction: bad jet definitions are improved.
Gain in effective luminosity* about 20-30%

(i.e. they were ‘bad’ due to a large extent to their behaviour with respect to the UE)

* ρL = factor of luminosity needed to obtain equivalent signal/background significance



Matteo Cacciari - LPTHE MCnet School - Lund - July 2009

Summary

84



Matteo Cacciari - LPTHE MCnet School - Lund - July 2009

Summary

84

There are many cone-type jet algorithms, but probably a single IRC-safe one



Matteo Cacciari - LPTHE MCnet School - Lund - July 2009

Summary

84

There are many cone-type jet algorithms, but probably a single IRC-safe one

There are also many recombination-type algorithms, usually IRC-safe



Matteo Cacciari - LPTHE MCnet School - Lund - July 2009

Summary

84

There are many cone-type jet algorithms, but probably a single IRC-safe one

There are also many recombination-type algorithms, usually IRC-safe

Their results will normally be ‘similar’, especially on inclusive quantities. 
However, if you plan to compare to higher order pQCD you must use an 
IRC-safe algorithm



Matteo Cacciari - LPTHE MCnet School - Lund - July 2009

Summary

84

There are many cone-type jet algorithms, but probably a single IRC-safe one

There are also many recombination-type algorithms, usually IRC-safe

Their results will normally be ‘similar’, especially on inclusive quantities. 
However, if you plan to compare to higher order pQCD you must use an 
IRC-safe algorithm

A jet algorithm complemented by its parameters and the recombination 
scheme is called a jet definition



Matteo Cacciari - LPTHE MCnet School - Lund - July 2009

Summary

84

There are many cone-type jet algorithms, but probably a single IRC-safe one

There are also many recombination-type algorithms, usually IRC-safe

Their results will normally be ‘similar’, especially on inclusive quantities. 
However, if you plan to compare to higher order pQCD you must use an 
IRC-safe algorithm

A jet algorithm complemented by its parameters and the recombination 
scheme is called a jet definition

The proper choice of the parameters of a jet definition can considerably 
improve the sensitivity of an analysis



Matteo Cacciari - LPTHE MCnet School - Lund - July 2009

Summary

84

There are many cone-type jet algorithms, but probably a single IRC-safe one

There are also many recombination-type algorithms, usually IRC-safe

Their results will normally be ‘similar’, especially on inclusive quantities. 
However, if you plan to compare to higher order pQCD you must use an 
IRC-safe algorithm

A jet algorithm complemented by its parameters and the recombination 
scheme is called a jet definition

The proper choice of the parameters of a jet definition can considerably 
improve the sensitivity of an analysis

Third-generation algorithms (e.g. filtering) appear promising for analyses where 
the jet substraction plays a relevant role



Matteo Cacciari - LPTHE MCnet School - Lund - July 2009

Summary

84

There are many cone-type jet algorithms, but probably a single IRC-safe one

There are also many recombination-type algorithms, usually IRC-safe

Their results will normally be ‘similar’, especially on inclusive quantities. 
However, if you plan to compare to higher order pQCD you must use an 
IRC-safe algorithm

A jet algorithm complemented by its parameters and the recombination 
scheme is called a jet definition

The proper choice of the parameters of a jet definition can considerably 
improve the sensitivity of an analysis

Third-generation algorithms (e.g. filtering) appear promising for analyses where 
the jet substraction plays a relevant role

Jet areas and subtraction are tools whose full potential has probably not yet 
been explored and exploited


