Hadronisation: Models vs. Data

Klaus Hamacher, Bergische Univ. Wuppertal, DELPHI

- Introduction
- Remarks on Tuning
- Models compared to Data
 (shapes, incl. & ident. hadrons., rates, E-dependence, heavy q´s, resonances, baryons, soft γ´s, gluons<->quarks, Bose Einstein FSI)
- Summary

Introduction

At LHC/pp interactions:

intricate event structure:

PDF's, ISR, multiple interactions, FSR, hadronisation,

-> fix fragmentation mainly using e⁺e⁻ data

HERWIG Parameters (a la ALEPH)

parameter	MC name	HW0	HW-CR	
$P_{\rm reco}$	PRECO	0	1/9	
min. virtuality (GeV^2)	VMIN2	-	0.1	
$\Lambda (\text{GeV})$	QCDLAM	0.190 ± 0.005	0.187 ± 0.005	
gluon mass (GeV)	RMASS(13)	0.77 ± 0.01	0.79 ± 0.01	
max. cluster mass (GeV)	CLMAX	3.39 ± 0.08	3.40 ± 0.08	
angular smearing, dusc	$\operatorname{CLSMR}(1)$	0.59 ± 0.03	0.66 ± 0.04	
angular smearing, b	$\operatorname{CLSMR}(2)$	0	0	
power in cluster params for heavy clusters decay				
splitting, dusc	PSPLT(1)	0.945 ± 0.018	0.886 ± 0.017	
power in cluster				
splitting, b	PSPLT(2)	0.33	0.32	
decuplet baryon weight	DECWT	0.71 ± 0.06	0.70 ± 0.06	
$\langle n_{\rm ch} \rangle$	20.96	20.98		
f(reco) Eur.Phys.J. C4	-	0.08		

Few parameters for general fragmentation in HERWIG!

How to Fix Model Parameters

Require description of data : measured hadrons

- need complete model
 (from PDF ... to observed hadrons)
- need corrected data

Else no proper comparison possible !

How to Tune

- generate many event samples using random MC model param. sets (use physical parameters e.g. α_s instead of Λ);
- interpolate between samples -> parameterisation(MC param.)
 (2nd order multidimensional polynomial with correlations);
- fit analytic parameterisation to data -> best MC param.; regard standard fitting rules;
- if optimum MC params. outside initial param. hypervolume, or volume too big iterate (we used 2nd order interpolation!)
- for syst. errors exchange data distributions in the fit

Strategy tested for many (15) parameters simultaneously

Which Data Distributions ?

Start from sensitivity scaled momentum 1 X_p obvious 0.75 0.5 physics motivation 0.25 but check 0 sensitivity -0.25 of the data -0.5 AQCD distribution! 0 ▲ h -0.75 σ -1 0.5 0.7 0.8 0.9

Lund string frag. fct. parameters

Which Data to Chose!

- use only sensitive data
- try to avoid large correlation btw. parameters like in previous plot
 α_s <> p_t^{cut} ; α_s <> frag. fct. ; p_t^{cut} <> # resonances
- a tune is a fit =>
 exclude badly described distributions
 e.g. only use baryon rate not baryon momentum spectrum.
 Problem if model describes data badly =>
 model parameters ill-defined!

-> 4 Jet rate obs. too low for Pythia, too high for Herwig, Ariadne ~ok

Check ME/PS Matching

Check ME/PS matching

- E- and/or cos Θ -dependence
- of 3- and 4-jet observables have

to be described simultaneously!

but:

little 4-jet data published OPAL (M. Ford) => also ALEPH data

Minor

Inclusive Charged Hadrons

Identified Charged Hadrons

Identified Charged Hadrons

leading particles $\Delta = (D_q^h - D_{\bar{q}}^h) / (D_q^h + D_{\bar{q}}^h)$

Identified Hadrons from BaBar ($E < Y_{4s}$)

Inclusive Charged Hadrons E-Dep.

Models describe energy evolution (*10) for mesons but fail for protons

Heavy Quark Fragmentation

σ dσ/dx_B

Pythia --- Bowler FF best: $f(z) = \frac{N_B}{z^{1+bm^2}} (1-z)^a \exp(\frac{-b m_t^2}{z})$ (a|b)=(0.12|0.58) x²/nf.=188/60

Similar findings from SLD/LEP for b fragmentation

Heavy Quark Resonances

pseudoscalar/vector/higher resonance (**) ratios

- b V/(V+P)~3/4 (spin counting expectation) N(B**)/N(B)~30%
- c
 V/(V+P)~0.6
 many clear D** states seen at B-factories
- Compare model fits for light quarks
 P:V:(**) ~ 1:1:1
 (V: tiny pref. long. polar.)

not expected in string fragmentation

Rates: Data vs. Models

Particle	LEP measured	Pythia	Herwig
charged	20,9±0,24	20,800	20,900
π ⁰	9,2±0,32	9,800	9,800
π [±]	8,5 ± 0,1	8,550	8,800
K ⁰	1,025±0,013	1,090	1,040
K ⁺	1,115±0,03	1,120	1,060
η+η΄	1,2±0,09	1,190	1,160
p	0,49±0,05	0,485	0,390
Λ	0,186±0,008	0,175	0,184
Δ ⁺⁺	0,064±0,033	0,0800	0,0770
Ξ(1530) ⁰	0,0055+0,0006	0 0035	0,0125

General rates are well described (HERWIG!)

Rates: Data vs. Models

Particle	LEP measured	Pythia	Herwig
f ⁰	0,146±0,012	0,160	_
$ ho^{o}$	1,23±0,1	1,270	1,430
K*0	0,369±0,012	0,390	0,370
K*+	0,357±0,039	0,390	0,370
ω	1,016±0,065	1,320	0,910
φ	0,0963±0,0032	0,107	0,100
f ₂ (1270)	0,25±0,08	0,290	0,260
K* ₂ (1430)0	0,095±0,035	0,075	0,079
f´ ₂ (1525)	0,0224±0,0062	0,026	0,030
Λ(1520)	0,0225±0,0028	0	"O"

O(30%) of light quark primary mesons have L=1 Mass splitting for baryon smaller --> similar baryonic states?

Rates - Light Flavour Resonances

Phenomomenological parametrisation of meson rates:

$$\frac{\langle n \rangle}{(2J+1)} \propto \gamma^{k} \cdot e^{-bM}$$

$$\cdot \gamma \sim 0.5 \quad b \sim 5/GeV$$

k # s-q's J spin

suggests:

- democratic production
 of spin states
- production of higher
 mass resonances

Baryon Resonances ?

Direct Soft Photons

Compare Gluon vs. Quark Splitting Kernels

relate e+e- jet rates / Sudakovs

 $R_{2} = \Delta_{q}^{2}(y) - \sum_{y_{0}}^{y} dy' \Gamma_{q}(y, y')$

Kernels

$$\Gamma_{q \to qg}(Q,q) = \frac{2C_A}{\pi} \frac{\alpha_s(q)}{q} \ln\left(\frac{Q}{q} - \frac{3}{4}\right)$$

$$\Gamma_{g \to gg}(Q,q) = \frac{2C_A}{\pi} \frac{\alpha_s(q)}{q} \ln\left(\frac{Q}{q} - \frac{11}{12}\right)$$

$$\Gamma_{q \to qg}(Q,q) = \frac{2n_f T_F}{3\pi} \frac{\alpha_s(q)}{q}$$

Similarly apply strategy to single gluon and quark jets in 3-jet events $R_1^g = \Delta_g(y)$ $R_1^q = \Delta_q(y)$

Compare g vs. q Jet Rates/Splitting Prob.

$$R_1(y) = \frac{N_1(y)}{N_{tot}}$$

%tage of non-split jets

gluons split "earlier" (high y)

$$R_1^{q/g}(y) = \Delta_{experim.}^{q/g}(y)$$

~ differential splitting probability

quarks take over at small y

described ok by models

Compare g vs. q To NLL Splitting Kernels

∼ 1

$$\begin{split} \tilde{D}_{1}^{g}(y) &\simeq \Gamma_{g \to gg} + \Gamma_{g \to q\bar{q}} \\ \tilde{D}_{1}^{q}(y) &\simeq \Gamma_{q \to qg} \\ \text{splitting probability = kernel} \end{split}$$

Gluons deviate "earlier" (bigger y) from NLL expectation than quarks

Hadronisation sets in "earlier" for g than q

Reason:

- => quarks are valence particles
- => E-conservation

Compare g vs. q higher splittings

Gluons split "earlier" but quarks keep up later

g & q jet splitting probability about equal for high splittings

Exp. confirm PS picture

All jets dominated by gluon radiation

Expect differences (beyond colour factor) only for leading particles

3 Jet Evts. -Gluon Fragmentation

ALEPH, preliminary :

3-jet evts (D,0.01) at $E_{cm}=M_Z$ of all topologies, photonic jets removed, =>890 000 evts. energy-ordering Ejet1 > Ejet2 > Ejet3, Jet 3 is 71% gluon

Gluons

tiny excess (2%) of fast neutal systems cmp. to model

octett fragmentation ???

3 Jet Evts. -Gluon Fragmentation

Gluon multiplicity very well described by analytic prediction => little room for qg differences (except leading particles)

Gluon Fragmentation Identified H's

Models reasonably describe identified spectra

Gluon Fragmentation ggg vs. qq

Gluon Fragmentation - Baryons

(but no double ratio shown) ΙZ

Final State Interactions

Colour Reconnection

not discussed; cures ptout problem

Bose Einstein Correlation

- describe equal boson correlations.
- required for small (tiny) p₊ description

Implemented as a classical "field" in PYTHIA

- destroys energy-momentum-conservation
- rescaling (may) disturb shape distributions
 "unphysical" PS parameters

Figure 1: The normalized and corrected Q distribution of same-sign charged particle pairs in b-depleter Z decays, compared to model predictions (a). The relative deviation of the model predictions from the data is shown in (b). The grey band indicates the statistical errors.

BE Field also Acts on Unlike Sign Pairs!

Summary

·Quality of data description by MC models:

- very good for event shapes, global inclusive distributions
- rates reasonably described even with few param. cluster model
- heavy quarks well described by Lund/Bowler FF
- "large" amount of high mass resonances

(understanding of mass dependence of hadron production?)

• baryons show some discrepancies (but baryons are pair produced)

·Models very good were we have real understanding

(PS-ME matching to be checked)

. More trouble in the qualitative corners of the models

PYTHIA Parameters (ALEPH)

parameter	name in	default	range		fit result	
	program	value	generated	value	error	syst.
$\Lambda_{QCD} (\text{GeV})$	PARJ(81)	0.29	0.21 - 0.37	0.292	± 0.003	± 0.006
M_{min} (GeV)	PARJ(82)	1.0	1.0 - 2.0	1.57	± 0.04	± 0.13
$\sigma_q ~({ m GeV})$	PARJ(21)	0.36	0.28 - 0.44	0.370	± 0.002	± 0.008
a	PARJ(41)	0.30	0.20 - 0.60	0.40	(fixed)	
$b \; (\text{GeV}^{-2})$	PARJ(42)	0.58	0.60 - 1.00	0.796	\pm 0.012	± 0.033
ϵ_c	-PARJ(54)	0.050	0.015 - 0.065	0.040	adjusted	
ϵ_b	-PARJ(55)	0.005	0.0005 - 0.0075	0.0035	adjusted	
$p(S=1)_{d,u}$	PARJ(11)	0.50	0.40 - 0.70	0.55	± 0.02	± 0.06
$p(S=1)_s$	PARJ(12)	0.60	0.35 - 0.65	0.47	± 0.02	± 0.06
$p(S=1)_{c,b}$	PARJ(13)	0.75	0.50 - 0.80	0.65	adjusted	
$p(J^P = 2^+; L = 1, S = 1)$	PARJ(17)	0.0	0.10 - 0.30	0.20	adjusted	
extra η' suppression	PARJ(26)	0.40	0.05 - 0.55	0.27	± 0.03	± 0.09
s/u	PARJ(2)	0.30	0.19 - 0.39	0.285	± 0.004	± 0.014
qq/q	PARJ(1)	0.10	0.05 - 0.15	0.106	± 0.002	± 0.003
(su/du)/(s/u)	PARJ(3)	0.40	0.4 - 1.0	0.71	± 0.04	± 0.07
leading baryon suppr.	PARJ(19)	1.0	0.2 - 1.0	0.57	± 0.03	± 0.10
switch				setting		
fragmentation function	MSTJ(11)	4		3		
baryon model	MSTJ(12)	2		3	Phys.Rep.	294(1998)
azimuthal distrib. in PS	MSTJ(46)	3		3	,p	