Hard probes for a strongly coupled plasma from AdS/CFT

Edmond Iancu IPhT Saclay & CNRS

(lecture notes arXiv:0812.0500)

New ideas in hadronization: Intersections between QCD, AdS/CFT and the QGP, IP3, Durham, April 15–17, 2009

Hard probes for a strongly coupled plasma - p. 1

Outline

Outline

Motivation

Partons and jets in pQCD

AdS/CFT correspondence

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Conclusions

Backup

Motivation :

Hard probes for Heavy Ion Collisions at RHIC and LHC (see the talks by W. Zajc and A. Starinets for soft probes)

Weak coupling: Partons and jets in perturbative QCD

Strong coupling: AdS/CFT Correspondence

Finite-temperature plasma at strong coupling:

Deep inelastic scattering & Parton saturation

 Energy loss & Momentum broadening (see also the talk by J. Casalderrey–Solana)

Ultrarelativistic heavy ion collisions @ RHIC and LHC

Motivatio	l
-----------	---

- RHIC
- Jets in AA
- Energy loss
- Momentum broadeningRAA

(A)

Partons and jets in pQCD

AdS/CFT correspondence

- Hard probes at strong coupling
- DIS at strong coupling

Heavy Quark

Conclusions

Backup

- Extremely complex phenomena
 - high density partonic systems in the initial wavefunctions
 - multiple interactions during the collisions
 - complicated, non-equilibrium, dynamics after the collision
 - expansion, thermalization, hadronisation
- Is there any place for strong–coupling dynamics ?

Hadron production at RHIC

Outline	
Motivation	
●RHIC	
 Jets in AA 	
Energy loss	
 Momentum broadening 	
• RAA	
Partons and jets in pQCD	
AdS/CFT correspondence	
Hard probes at strong coupling	
DIS at strong coupling	
Heavy Quark	
Conclusions	
Paakup	
Баскир	

Œ

- $\blacksquare \sim 3000$ hadrons in the final state vs. 400 nucleons in AA
- Most of them arise as hadronized partons
- Particle correlations are essential to disentangle phenomena

Jets in proton–proton collisions

(A)

Nucleus-nucleus collision

high density, strong interactions, ... or both

(A)

Energy loss at weak coupling

Medium induced radiation

Motivation RHIC Jets in AA Energy loss Momentum broadening RAA Partons and jets in pQCD AdS/CFT correspondence Hard probes at strong coupling DIS at strong coupling Heavy Quark

Conclusions

Backup

Outline

• A non–local process: gluon formation time $\Delta t \sim \omega/Q^2$

 $-\frac{\mathrm{d}E}{\mathrm{d}t} \simeq \alpha_s N_c \langle p_{\perp}^2 \rangle$: relation to 'momentum broadening'

Outline

RAA

Motivation • RHIC • Jets in AA • Energy loss

Momentum broadening

Partons and jets in pQCD

AdS/CFT correspondence

DIS at strong coupling

Heavy Quark

Conclusions

Backup

Hard probes at strong coupling

Transverse momentum broadening

Scattering off the plasma constituents

$$\frac{\mathrm{d}\langle p_{\perp}^2 \rangle}{\mathrm{d}t} \equiv \hat{q} \simeq \alpha_s N_c \, xg(x, Q^2)$$

xg(x, Q²) : gluon distribution per unit volume in the medium
 xg(x, Q²) ≃ n_q(T) xG_q + n_g(T) xG_g with n_{q,g}(T) ∝ T³
 This requires parton evolution from T up to Q ≫ T
 "jet quenching parameter" ĝ : a local transport coefficient

Outline

Motivation • RHIC • Jets in AA

Nuclear modification factor

• How to measure \hat{q} ? Compare AA collisions at RHIC to pp

$$R_{AA}(p_{\perp}) \equiv \frac{Yield(A+A)}{Yield(p+p) \times A^2}$$

which seems (marginally) inconsistent with weak coupling

e^+e^- annihilation: Jets in pQCD

- How would a high—energy jet interact in a strongly coupled plasma ?
 - How to produce jets in the first place ?
 - Guidance from perturbative QCD: $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}$

• Decay of a time-like photon: $Q^2 \equiv q^{\mu}q_{\mu} = s > 0$

Outline

Motivation

Partons and jets in pQCD

●e+e-

Jets

• 3-jet

• DIS

•F2

Parton evolution

Gluons at RHIC

Saturation

AdS/CFT correspondence

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Conclusions

Backup

e^+e^- annihilation: Jets in pQCD

- How would a high-energy jet interact in a strongly coupled plasma ?
 - How to produce jets in the first place ?
 - Guidance from perturbative QCD: $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}$

The structure of the final state is determined by
 parton branching & hadronisation

____plasma ?

- Partons and jets in pQCD
- ●e+e-

Outline

Motivation

- Jets
- 3-jet
- DIS
- F2
- Parton evolution
- Gluons at RHIC
- Saturation
- AdS/CFT correspondence

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Conclusions

Backup

Parton branching at weak coupling

Outline

Motivation

Partons and jets in pQCD

(A)

●e+e-

- Jets2 iot
- 3-jet
- DIS
- F2
- Parton evolution
- Gluons at RHIC
- Saturation
- AdS/CFT correspondence

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Conclusions

Backup

Gluon 'formation time' : $\Delta t \sim k_\ell/k_\perp^2$

Early partons are hard $(k_{\perp} \gg \Lambda_{\rm QCD})$ and hence perturbative

Bremsstrahlung favors the emission of soft ($x \ll 1$) and collinear ($k_{\perp}^2 \ll s$) gluons ($k_{\ell} = xp_{\ell}$)

$$\mathrm{d}\mathcal{P}_{\mathrm{Brem}} \sim \alpha_s(k_{\perp}^2) N_c \, \frac{\mathrm{d}^2 k_{\perp}}{k_{\perp}^2} \, \frac{\mathrm{d}x}{x}$$

Relatively simple final state !

Jets in perturbative QCD

Outline

Motivation

Partons and jets in pQCD

(A)

• e+e-

Jets

- 3-jet
- DIS
- •F2
- Parton evolution
- Gluons at RHIC
- Saturation

AdS/CFT correspondence

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Conclusions

Backup

Few, well collimated, jets

• e^+e^- cross-section computable in perturbation theory

$$\sigma(s) = \sigma_{\text{QED}} \times \left(3\sum_{f} e_{f}^{2}\right) \left(1 + \frac{\alpha_{s}(s)}{\pi} + \mathcal{O}(\alpha_{s}^{2}(s))\right)$$

 $\sigma_{\rm QED}$: cross-section for $e^+e^- \rightarrow \mu^+\mu^-$

• Multi-jet ($n \ge 3$) events appear, but are comparatively rare

3-jet event at OPAL (CERN)

œ

HAN SUMS (GEV) HAN PTOT 35,768 PTRANS 29,964 PLONG 15,700 CHARGE -2 TOTAL CLUSTER ENERGY 15,169 PHOTON ENERGY 4,893 NR OF PHOTONS 11

Deep inelastic scattering

• and longitudinal momentum $p_z = xP$

The proton structure function

 \bigcap

Parton evolution in pQCD

Gluons are implicitly seen in DIS, via parton evolution

Bremsstrahlung favors the emission of gluons with $x \ll 1$

Partons at RHIC

Outline	
Motivation	
Partons and jets in pQCD	
• e+e-	
• Jets	
• 3-jet	
• DIS	
• F2	
Parton evolution	
● Gluons at RHIC	
 Saturation 	
AdS/CFT correspondence	
Hard probes at strong coupling	
DIS at strong coupling	
Heavy Quark	
Conclusions	
Backup	

 (\mathbf{A})

- Partons are actually 'seen' (liberated) in the high energy hadron-hadron collisions
 - central rapidity: small-x partons
 - forward/backward rapidities: large-x partons

Gluon Saturation: CGC

• When occupation number $\sim 1/\alpha_s \Longrightarrow$ strong repulsion

$$n(x,Q^2) = \frac{\pi}{Q^2} \times \frac{xG(x,Q^2)}{\pi R^2} \sim \frac{1}{\alpha_s}$$
 when $Q^2 \simeq Q_s^2(x)$

Partons and jets in pQCD

•e+e-

Outline

Motivation

- Jets
- 3-jet
- DIS

•F2

Parton evolution

Gluons at RHIC

Saturation

AdS/CFT correspondence

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Conclusions

Backup

Gluon Saturation: CGC

The saturation momentum

For $Q^2 < Q_s^2(x)$, the gluon occupation numbers saturate

Hard probes in a strongly-coupled plasma

Virtual photon : electromagnetic current J_{μ}

Outline

Motivation

Partons and jets in pQCD

AdS/CFT correspondence

- Hard probes in a plasma
- CFT
- Trace anomaly
- String theory
- AdS/CFT
- Black Hole

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Conclusions

Backup

• Thermal expectation value (retarded polarization tensor) :

$$\Pi_{\mu\nu}(q) \equiv \int \mathrm{d}^4 x \,\mathrm{e}^{-iq \cdot x} \,i\theta(x_0) \,\langle \left[J_{\mu}(x), J_{\nu}(0)\right] \rangle_T$$

- 'Hard probe' : large virtuality $Q^2 \equiv |q^2| \gg T^2$
 - time-like current ($q^2 > 0$) : jets
 - space–like current ($q^2 < 0$) : DIS, partons

Relativistic heavy quark : $M \gg T$ and $v \simeq 1$

- energy loss
- transverse momentum broadening

Strong coupling \implies AdS/CFT correspondence

Gauge theory side: CFT

- \checkmark $\mathcal{N} = 4$ Supersymmetric Yang–Mills theory
 - color gauge group $SU(N_c)$
 - supersymmetry (fermions \leftrightarrows bosons)
 - gluons, fermions, scalars (all in the adjoint repres. !)
 - quantum conformal invariance (fixed coupling)
 - no confinement, no intrinsic scale
- Has this any relevance to QCD ??
- Perhaps better suited for QCD at finite temperature
 - deconfined phase (quark–gluon plasma)
 - quarks and gluons play rather similar roles
 - nearly conformal (small running-coupling effects)

- AdS/CFT correspondence Hard probes in a plasma

Partons and jets in pQCD

● CFT

Outline

Motivation

- Trace anomaly
- String theory
- AdS/CFT Black Hole
- Hard probes at strong coupling
- DIS at strong coupling
- Heavy Quark
- Conclusions
- Backup

Trace anomaly from lattice QCD

(A)

Т

T [MeV]

700

600

Ŧ

600

500

I

700

String theory side: AdS

• Type IIB string theory living in D = 10: $AdS_5 \times S^5$

Motivation

Partons and jets in pQCD

AdS/CFT correspondence

Hard probes in a plasma

• CFT

• Trace anomaly

• String theory

AdS/CFT

Black Hole

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Conclusions

Backup

• $0 \le \chi < \infty$: 'radial', or '5th', coordinate

• gauge theory lives at the Minkowski boundary $\chi = 0$

The Gauge/Gravity duality (Maldacena, 1997)

- Gauge theory has two parameters:
 - coupling constant g (elementary charge)
 - number of colors N_c
 - weakly or strongly coupled depending upon $\lambda \equiv g^2 N_c$
- String theory has three parameters:
 - curvature radius of space R
 - string coupling constant g_s
 - string length l_s (typical size of string vibrations)
- Mapping of the parameters :

$$4\pi g_s = g^2 , \qquad (R/l_s)^4 = g^2 N_c$$

Strong 't Hooft coupling (more properly, $N_c \to \infty$) : $\lambda \equiv g^2 N_c \gg 1$ with $g^2 \ll 1 \implies$ classical (super)gravity

Motivation

Partons and jets in pQCD

- AdS/CFT correspondence
- Hard probes in a plasma
- CFT
- Trace anomaly
- String theory
- AdS/CFT

Black Hole

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Conclusions

Backup

Heating AdS₅

\square $\mathcal{N} = 4$ SYM at finite temperature \iff Black Hole in AdS_5

Motivation

```
Partons and jets in pQCD
```

AdS/CFT correspondence

- Hard probes in a plasma
- CFT
- Trace anomaly
- String theory
- AdS/CFT
- Black Hole

```
Hard probes at strong coupling
```

DIS at strong coupling

Heavy Quark

Conclusions

Backup

where $f(\chi) = 1 - (\chi/\chi_0)^4$ and $\chi_0 = 1/\pi T$ = BH horizon

A black hole has entropy and thermal (Hawking) radiation

Maxwell equations in a curved space-time

 $\partial_m \left(\sqrt{-g} g^{mn} g^{pq} F_{nq} \right) = 0$ where $F_{mn} = \partial_m A_n - \partial_n A_m$

Relativistic heavy quark

• Heavy quark in 4D \leftrightarrow a Nambu–Goto string in AdS_5 BH Herzog, Karch, Kovtun, Kozcaz, and Yaffe; Gubser, 2006 ("trailing string") Outline Motivation Partons and jets in pQCD ()AdS/CFT correspondence Hard probes at strong coupling DIS off a Black Hole Heavy quark v^{1/2}T ●UV/IR DIS at strong coupling Heavy Quark Conclusions Backup $\frac{1}{T}$ χ

Nambu–Goto equations in a curved space–time

Outline

Motivation

●UV/IR

Heavy Quark

Conclusions

Backup

Partons and jets in pQCD

AdS/CFT correspondence

DIS at strong coupling

Hard probes at strong couplingDIS off a Black HoleHeavy quark

Physical interpretation

- Rôle of the 5th dimension: a reservoir of quantum flucts.
- Radial penetration χ of the wave packet in $AdS_5 \iff$ transverse size L of the partonic fluctuation on the boundary

Space–like photon with virtuality Q: The Maxwell wave penetrates up to a radial distance $\chi \sim 1/Q$

Physical interpretation

Rôle of the 5th dimension: a reservoir of quantum flucts.

Outline

Motivation

Partons and jets in pQCD

AdS/CFT correspondence

Hard probes at strong coupling

DIS off a Black Hole

Heavy quark

●UV/IR

DIS at strong coupling

Heavy Quark

Conclusions

Backup

Radial penetration χ of the wave packet in $AdS_5 \iff$ transverse size L of the partonic fluctuation on the boundary

- A space-like photon cannot decay (in the vacuum)
- Virtual partonic fluctuations with
 - transverse size $L \sim 1/Q$
 - and lifetime $\Delta t \sim \omega/Q^2$

Partonic fluctuation in the plasma

A plasma at finite temperature: the space-like photon can decay due to the parton interactions in the medium

Motivation

Outline

- Partons and jets in pQCD
- AdS/CFT correspondence
- Hard probes at strong coupling
- DIS at strong coupling
- Dipole in a plasma
- Saturation momentum
- Branching at strong coupling
- Isotropy
- Parton saturation
- No Jets
- Meson melting
- Heavy Quark
- Conclusions
- Backup

Strong coupling :

The potential barrier $\sim Q$ (energy–momentum conservation) disappears with increasing energy (ω) or temperature (T)

Saturation momentum

 Outline

 Motivation

 Partons and jets in pQCD

 AdS/CFT correspondence

 Hard probes at strong coupling

 DIS at strong coupling

 Dipole in a plasma

 Saturation momentum

 Branching at strong coupling

 Isotropy

 Parton saturation

 No Jets

 Meson melting

Conclusions

Backup

- Gravitational interactions are proportional to the energy density in the wave (ω) and in the plasma (T)
- The criterion for strong interaction within the plasma

- The partonic fluctuation must live long enough to feel the effects of the plasma
- High energy, or high T, or low $Q: Q \leq Q_s$ with

$$Q_s \simeq (\omega T^2)^{1/3} \simeq \frac{T}{x}$$
 where $x \equiv \frac{Q^2}{2\omega T}$

Physics: the photon can decay due to the plasma force

Outline

Motivation

Isotropy

No Jets Meson melting

Heavy Quark

Conclusions

Backup

DIS at strong coupling Dipole in a plasma

Parton saturation

Medium induced parton branching

The virtual photon disappears into the plasma via its decay (and not via thermal scattering) !

'Quasi-democratic branching' (Hatta, E.I., Mueller, 08)

e^+e^- at strong coupling

A time-like current can decay already in the vacuum

- Dipole in a plasma
- Saturation momentum
 Branching at strong coupling
- Isotropy
- Parton saturation
- No Jets
- Meson melting

Heavy Quark

Conclusions

Backup

- Infrared cutoff $\Lambda \longrightarrow$ splitting continues down to $Q \sim \Lambda$
- In the COM frame → spherical distribution ⇒ no jets ! (similar conclusion by Hofman and Maldacena, 2008)
- Final state looks very different as compared to pQCD !

Outline

Motivation

Partons and jets in pQCD

AdS/CFT correspondence

Hard probes at strong coupling

Parton saturation at strong coupling

```
Q > Q_s(x) = T/x : F_2(x, Q^2) \simeq 0
```

 \implies no partons at high Q^2 /large x

$$Q < Q_s(x) = T/x$$
 : $F_2(x, Q^2) \sim x N_c^2 Q^2$

 \implies parton saturation with occupation numbers $\sim \mathcal{O}(1)$

All partons have branched down to small values of x !

No forward jets !

No large-x partons ⇒ no forward/backward jets in a hadron-hadron collision at strong coupling

'The Nightmare of CMS'

"No drag force on a small meson in the plasma"

$$L_s \sim \frac{1}{Q_s} \quad \& \quad \gamma \sim \frac{\omega}{Q} \implies L_s \sim \frac{1}{\sqrt{\gamma}T} = \frac{(1-v_z^2)^{1/4}}{T}$$

[Peeters, Sonnenschein, Zamaklar; Liu, Rajagopal, Wiedemann (06)]

Heavy Quark: Energy loss

Partons and jets in pQCD

(A)

AdS/CFT correspondence

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Energy lossBroadening

String fluctuations

Conclusions

Backup

• Virtual quanta with $Q \leq Q_s$ are absorbed by the plasma

Parton formation time : $\Delta t \sim \omega/Q_s^2$

$$-\frac{\mathrm{d}E}{\mathrm{d}t} \simeq \sqrt{\lambda} \frac{\omega}{(\omega/Q_s^2)} \simeq \sqrt{\lambda} Q_s^2 \simeq \sqrt{\lambda} \gamma T^2$$
$$Q_s \simeq \frac{\omega}{Q_s^2} T^2 \simeq \frac{\gamma}{Q_s} T^2 \implies Q_s^2 \sim \gamma T^2$$

Herzog, Karch, Kovtun, Kozcaz, and Yaffe; Gubser, 2006 (trailing string)

Outline

Motivation

Partons and jets in pQCD

AdS/CFT correspondence

DIS at strong coupling

Heavy Quark

Energy loss
Broadening
String fluctuations

Conclusions

Backup

Hard probes at strong coupling

Momentum broadening

Fluctuations in the medium-induced emission process

Casalderrey-Solana, Teaney; Gubser, 2006 (from trailing string)

Non-local process: no meaningful 'jet quenching' transport coefficient ! (A. Mueller et al, 2008)

Outline

Motivation

Partons and jets in pQCD

AdS/CFT correspondence

DIS at strong coupling

Heavy Quark

Energy loss
Broadening
String fluctuations

Conclusions

Backup

Hard probes at strong coupling

Momentum broadening

Fluctuations in the medium-induced emission process

Longitudinal broadening is parametrically larger !

 $\frac{\mathrm{d}\langle p_L^2 \rangle}{\mathrm{d}t} \sim \sqrt{\lambda} \frac{\omega^2}{(\omega/Q_*^2)} \sim \sqrt{\lambda} \sqrt{\gamma} \gamma^2 T^3$

Momentum broadening

Strong coupling : fluctuations in the emission process

Outline	
Motivation	

Partons and jets in pQCD

AdS/CFT correspondence

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Energy loss

Broadening

String fluctuations

Conclusions

Backup

pQCD : thermal rescattering (different physics !)

Stochastic trailing string

How are quantum-mechanical (as opposed to thermal)

• World–sheet horizon at $\chi_s = 1/Q_s \sim 1/(\sqrt{\gamma}T) \ll 1/T$

• "Thermal fluctuations" with $T_{\rm eff} = \sqrt{\gamma}T$: Unruh temperature

Outline

Motivation

Partons and jets in pQCD

AdS/CFT correspondence

DIS at strong coupling

Heavy Quark

Energy loss
Broadening
String fluctuations

Conclusions

Backup

Hard probes at strong coupling

Stochastic trailing string

Langevin equation for the upper part of the string and the heavy quark

(G. Giecold, E.I., A. Mueller, 2009)

Encodes both energy loss and momentum broadening

Conclusions

Outline
Motivation
Partons and jets in pQCD
AdS/CFT correspondence
Hard probes at strong coupling
DIS at strong coupling
Heavy Quark
Conclusions

Backup

Hard probes & high-energy physics appears to be quite different at strong coupling as compared to QCD

• no jets in e^+e^- annihilation

- no forward/backward particle production in HIC
- different mechanism for jet quenching
- Are AdS/CFT methods useless for HIC ? Not necessarily so !
 - long-range properties (hydro, thermalization, etc) might stil be controlled by strong coupling
 - some observables receive contributions from several scales, from soft to hard: use AdS/CFT in the soft sector
 - most likely, the coupling is moderately strong, so it useful to approach the problems from both perspectives

Elliptic flow at RHIC: The perfect fluid

- Lattice QCD
- Resummations

(A)

- perfect fluid
- Jets
- Optical theorem
- Current correlator
- Gluons at HERA
- Screening length
- Saturation line
- String fluctuations
- $\frac{dN}{d\phi} \propto 1 + 2v_2 \cos 2\phi, \qquad v_2 = \text{"elliptic flow"}$ $\blacksquare \text{ Well described by hydrodynamical calculations with very small viscosity/entropy ratio: "perfect fluid"}$

• Non-central AA collision: Pressure gradient is larger along x

New ideas in hadronization: Intersections between QCD, AdS/CFT and the QGP, IP3, Durham, April 15–17, 2009

Viscosity over entropy density ratio

Viscosity/entropy density ratio at RHIC (in units of \hbar)

$$\frac{\eta}{s} = 0.1 \pm 0.1$$
 (theor) ± 0.08 (exp) [\hbar]

• Weakly interacting systems have $\eta/s \gg \hbar$

Kinetic theory: viscosity is due to collisions among molecules

 $\eta \sim \rho v \ell = \text{mass density} \times \text{velocity} \times \text{mean free path}$ $\sim 1/q^4$

Conjecture (from AdS/CFT) : [Kovtun, Son, Starinets, 2003]

 $\frac{\eta}{s} \ge \frac{\hbar}{4\pi}$ [lower limit = infinite coupling]

• The RHIC value is at most a few times $\hbar/4\pi$!

Hard probes at strong coupling

DIS at strong coupling

Partons and jets in pQCD

AdS/CFT correspondence

Heavy Quark

Conclusions

Backup

Outline

Motivation

Elliptic flow

Viscosity/entropy

Lattice QCD

Resummations perfect fluid

- Jets
- Optical theorem
- Current correlator
- Gluons at HERA
- Screening length
- Saturation line
- String fluctuations

Heating QCD : Lattice results

Energy density as a function of T (Bielefeld Coll.)

• AdS/CFT: $\mathcal{E}/\mathcal{E}_0 \to 3/4$ when $\lambda \to \infty$ ($\mathcal{N} = 4$ SYM)

Outline

Motivation

Partons and jets in pQCD

AdS/CFT correspondence

DIS at strong coupling

Heavy Quark

Conclusions

Elliptic flowViscosity/entropy

Lattice QCDResummations

perfect fluidJets

Optical theorem

Current correlator

Gluons at HERA

Backup

Hard probes at strong coupling

Finite–*T* : **Resummed perturbation theory**

This ratio $p/p_0 \approx 0.85$ can be also explained by resummed perturbation theory

(collective phenomena: screening, thermal masses)

(J.-P. Blaizot, A. Rebhan, E. lancu, 2000)

- Screening length
 Saturation line
- String fluctuations

First principle calculation without free parameter

The 'perfect fluid'

Uncertainty principle applied to viscosity:

Outline

Partons and jets in pQCD

AdS/CFT correspondence

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Conclusions

Backup

- Elliptic flow
- Viscosity/entropy
- Lattice QCD
- Resummations
- perfect fluidJets
- Optical theorem
- Current correlator
- Gluons at HERA
- Screening length
- Saturation line
- String fluctuations

 $\eta \sim \rho v \lambda_f, \qquad S \sim n \sim \frac{\rho}{m}$

 $\frac{\eta}{S} \sim m v \lambda_f \sim \hbar \frac{\text{mean free path}}{\text{de Broglie wavelength}} \gtrsim \hbar$

- Weakly interacting systems have $\eta/S \gg \hbar$
- Strongly coupled $\mathcal{N} = 4$ SYM plasma

$$\frac{\eta}{S} \to \frac{\hbar}{4\pi}$$
 when $\lambda \to \infty$

(Policastro, Son, and Starinets, 2001)

- This bound is believed to be universal : $\eta/S \ge \hbar/4\pi$
- The data at RHIC are consistent with the lower limit being actually reached : 'sQGP'

Jets

Outline

Motivation

Partons and jets in pQCD

 (Δ)

AdS/CFT correspondence

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Conclusions

Backup

Elliptic flow

Viscosity/entropy

Lattice QCD

Resummations

• perfect fluid

JetsOptical theorem

Current correlator

Gluons at HERA

Screening length

Saturation line

• String fluctuations

$$k_{\perp} \sim k \sim \sqrt{s} \implies \mathcal{P}_{\text{Brem}} \sim \alpha_s(s) \ll 1$$

small probability for emitting an extra gluon jet !

'Intra-jet activity' : collinear and/or soft gluons

$$\Lambda_{\rm QCD} \ll k_{\perp} \ll k \ll \sqrt{s} \implies \mathcal{P}_{\rm Brem} \sim \alpha_s \ln^2 \frac{\sqrt{s}}{\Lambda_{\rm QCD}} \sim \mathcal{O}(1)$$

modifies particle multiplicity but not the number of jets

Optical theorem

Total cross—section given by the optical theorem

Outline

Partons and jets in pQCD

 (\square)

AdS/CFT correspondence

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Conclusions

Backup

Elliptic flow

Viscosity/entropy

Lattice QCD

Resummations

perfect fluid

Jets

Optical theorem

Current correlator

- Gluons at HERA
- Screening length
- Saturation line
- String fluctuations

The quark loop: The vacuum polarization tensor $\Pi_{\mu\nu}$ for a time–like photon (here, evaluated at one–loop order)

This can be generalized to all-orders

Current–current correlator

• $\Pi_{\mu\nu}$ = current–current correlator to all orders in QCD

$$\Pi_{\mu\nu}(q) \equiv i \int \mathrm{d}^4 x \,\mathrm{e}^{-iq \cdot x} \left\langle 0 \left| \mathrm{T} \left\{ J_{\mu}(x) J_{\nu}(0) \right\} \right| 0 \right\rangle$$

 $J^{\mu} = \sum_{f} e_{f} \, \bar{q}_{f} \, \gamma^{\mu} \, q_{f} \, : \, \text{quark electromagnetic current}$

■ Valid to leading order in α_{em} but all orders in α_s

Motivation

Outline

Partons and jets in pQCD

 \bigcap

AdS/CFT correspondence

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Conclusions

Backup

Elliptic flow

Viscosity/entropy

Lattice QCD

Resummations

perfect fluid

Jets

Optical theorem

Current correlator

Gluons at HERA

Screening length

Saturation line

String fluctuations

Gluons at HERA

 $xg(x,Q^2) = #$ of gluons with transverse area $\sim 1/Q^2$ and $k_z = xP$

Screening length

- Outline Motivation
- Partons and jets in pQCD
- AdS/CFT correspondence
- Hard probes at strong coupling
- DIS at strong coupling
- Heavy Quark
- Conclusions
- Backup
- Elliptic flow
- Viscosity/entropy
- Lattice QCD
- Resummations
- perfect fluid
- Jets
- Optical theorem
- Current correlator
- Gluons at HERA
- Screening length
- Saturation line
- String fluctuations

A small color dipole ('meson') with transverse size $L \ll 1/Q_s$ propagates through the strongly–coupled plasma with almost no interactions !

• Larger dipoles with $L \gtrsim 1/Q_s$ cannot survive in the plasma

$$L_s \sim \frac{1}{Q_s} \quad \& \quad \gamma \sim \frac{\omega}{Q} \implies L_s \sim \frac{1}{\sqrt{\gamma}T} \ll \frac{1}{T}$$

■ The dipole lifetime is short on natural time scales:

$$\Delta t \sim \frac{\omega}{Q_s^2} \sim \frac{\sqrt{\gamma}}{T} \ll \frac{\gamma}{T}$$

Momentum broadening

Fluctuations in the medium-induced emission process

Outline Motivation

Partons and jets in pQCD

AdS/CFT correspondence

Hard probes at strong coupling

DIS at strong coupling

Heavy Quark

Conclusions

Backup

Elliptic flow

Viscosity/entropy

Lattice QCD

Resummations

• perfect fluid

Jets

Optical theorem

Current correlator

- Gluons at HERA
- Screening length
- Saturation line
- String fluctuations

$$\frac{\mathrm{d}\langle p_T^2 \rangle}{\mathrm{d}t} \sim \sqrt{\lambda} \frac{Q_s^2}{(\omega/Q_s^2)} \sim \sqrt{\lambda} \frac{Q_s^4}{\gamma Q_s} \sim \sqrt{\lambda} \sqrt{\gamma} T^3$$

$$\frac{\mathrm{d}\langle p_L^2 \rangle}{\mathrm{d}t} \sim \sqrt{\lambda} \frac{\omega^2}{(\omega/Q_s^2)} \sim \sqrt{\lambda} \sqrt{\gamma} \gamma^2 T^3$$

Casalderrey-Solana, Teaney; Gubser, 2006 (from trailing string)

Saturation line: weak vs. strong coupling

- Viscosity/entropy
- Lattice QCD
- Resummations
- perfect fluid
- Jets
- Optical theorem
- Current correlator
- Gluons at HERA
- Screening length
- Saturation line
- String fluctuations

Saturation exponent : $Q_s^2(x) \propto 1/x^{\lambda_s} \equiv e^{\lambda_s Y}$

- weak coupling (LO pQCD): $\lambda_s \approx 0.12 g^2 N_c$
- phenomenology & NLO pQCD: $\lambda_s \approx 0.2 \div 0.3$
- strong coupling (plasma): $\lambda_s = 2$ (graviton)

Stochastic trailing string

Stochastic trailing string

Physics: Fluctuations in the parton cascades

 (Δ)