Hadronization in cold QCD matter: data vs. phenomenology

> Alberto Accardi Hampton U. & Jlab

New ideas in hadronisation, Durham, 15-17 April 2009

Outline

Physics motivations

- Very short review of DIS experimental data
- Formation times theory review
- Making sense of HERMES / JLAB data
 - Parton lifetime, dihadron correlations
- From cold to hot QCD matter
- Perspectives at the Electron-Ion Collider (EIC)
- Conclusions
- Review: Accardi, Arleo, Brooks, d'Enterria, Muccifora "Parton propagation and hadronization in QCD matter" (soon to appear)

Physics motivations

Hadronization in elementary collisions

accardi@jlab.org

Nuclear collisions 1 - nDIS

accardi@jlab.org

Breakdown of universality in nuclei

Hadronization is no more process-independent

Among possible causes:

- struck quark interactions with the medium
- (pre)hadron interactions with the medium

This talk

- in-medium modifications of parton showers
- other medium nuclear, e.g., partial deconfinement [Dias de Deus '87]
- breakdown of factorization [for nuclear PDF, see Qiu, Sterman '02]

accardi@jlab.org

VS.

nDIS is a clean environment for

 (1) space-time evolution of hadronization
 nucleons as femto-detectors
 medium rather well known
 (2) Cold nuclear matter effects
 quark energy loss
 nuclear modifications of FF
 parton showers

Jet-quenching in A+A

properties of hot nuclear matter

$$E_{q} = v = E_{e} - E_{e'} \approx 2-25 \text{ GeV} \qquad E_{q} = p_{Th} / z$$

at HERMES/Jlab
$$E_{h} = z_{h} v \approx 2 - 20 \text{ GeV} \qquad E_{h} = p_{Th} \approx 2 - 20 \text{ GeV}$$

***** HERMES/JLAB kinematics is relevant to RHIC mid-rapidity

...but beware the virtuality: $\approx 2 \text{ GeV}^2 \text{ vs. 5-70 GeV}^2!!$ $Q^2 = -q^2$ is measured $Q^2 \propto E_q^2 = (p_T/z)^2$ is not

Physics motivations

11*

Nuclei as space-time analyzers

- nucleons as femto-detectors
- medium rather well known
- Iow final-state multiplicity

Non perturbative aspects of hadronization

approaching microscopic understanding of Fragmentation Functions
 how do partons dress up? Space-time evolution of hadronization
 color confinement dynamics

Parton propagation in perturbative QCD

QCD energy loss: basic pQCD, only indirectly tested so far
 DGLAP parton shower

Connection to other fields

- Calibration of jet-quenching in $A+A \Rightarrow$ properties of QGP
- Hadron attenuation corrections for v-oscillation experiments
- Tuning of parton showers in Monte-Carlo generators

accardi@jlab.org

Short review of e+A data

For the latest data see:

1) HERMES, NPB 780 (2007) 1

2) Trento Fragmentation Workshop, Feb 2008 http://arleo.web.cern.ch/arleo/ff_vacuum_medium_ect08/

Measurements at HERMES @ HERA

- \rightarrow HERMES: fixed target, $E_{lab} = 27.5 \text{ GeV}$ and 12 GeV
- Hadron attenuation versus $\rightarrow v = virtual \gamma energy$ $- z_h = E_h / v$ (hadron's fractional energy) \rightarrow Q² = photon virtuality $\rightarrow p_T =$ hadron transv. momentum - hadron flavor = π^{\pm} , K[±], p, \overline{p} \rightarrow A = target mass number Hadron p_T-broadening
- Dihadron correlations
- 2-dimensional binning (!)
 [HERMES, NPB 780 (2007) 1]
 accardi@jlab.org

Preliminary results at CLAS @ Jefferson Lab

accardi@jlab.org

Hadron formation time: a review of theory models

see:

- <u>A.A.</u>, EPJC 2007, mini review
- A.A. et al, full review soon to appear

The (naïve) framework : quark, prehadron, hadron

→ Hadronization is non perturbative \Rightarrow (many) models

General features:

Hadron attenuation in nDIS

accardi@jlab.org

Formation time estimates 1 – pQCD estimate

 Large π formation time, used in en. loss models to justify assumptions, but neglect interactions of forming color field with the medium
 accardi@jlab.org
 Durham, 14 Apr 2009

19

Formation time estimates 2 – Lund model (see also T.Sjostrand)

- * Prehadrons and hadrons [Bialas-Gyulassy '87]
 - Prehadron formed at $q\bar{q}$ creation (string breaking) C_i
 - Hadron h_i formed when q and q meet P_i
- * Average formation times are computable
 - At large $z \rightarrow 1$ $E_h \rightarrow v \Rightarrow$ string breaks early to leave all energy to the hadron: $\langle t_p \rangle \rightarrow 0$
 - At small $z \rightarrow 0$ nucleus hadron created at high rank after remnant many string breakings: $\langle t_p \rangle \rightarrow 0$

$$\begin{cases} \langle t_p \rangle = f(z_h)(1-z_h) \frac{z_h \nu}{\kappa} & \text{boost} \\ \langle t_h \rangle = \langle t_p \rangle + \frac{z_h \nu}{\kappa} & \text{(non pert. sc)} \end{cases}$$

energy conservation

X

Formation time estimates 2 – Lund model

$$\begin{cases} \langle t_p \rangle = f(z_h)(1-z_h) \frac{z_h \nu}{\kappa} \\ \langle t_h \rangle = \langle t_p \rangle + \frac{z_h \nu}{\kappa} \end{cases} \end{cases}$$

 (\tilde{y}) (\tilde{z}) (\tilde{z}) (

* For a v = 14 GeV pion at Hermes,

 $\langle t_p
angle \lesssim 5 ~{
m fm} ~~ \langle t_h
angle \sim 10 ~{
m fm} > R_A$

* Prehadron absorption with this estimate [A.A. et al., NPA 761(05)67]

see also:

Falter, Gallmeister, nucl-th/0512104 for similar ideas in a transport model Monte Carlo simulation

Formation time estimates 3 – Dipole model

* Leading hadron formation (z > 0.5) [Kopeliovich et al., NPA 740(04)211]

* Prehadron production time t_p

 = time at which gluon becomes decoherent with parent quark
 ★ At large z → 1, E_h → v ⇒ quark must be short-lived (or radiates too much energy)

 $\begin{array}{c} \langle t_p \rangle \propto (1 - z_h) \frac{z_h \nu}{Q^2} & \text{boost} \\ \text{energy} & \text{virtuality} \\ \text{conservation} & (\text{perturbative scale}) \end{array} \end{array}$

★ Evolution to hadron by path-integral formalism
 ◆ usually $\langle t_p \rangle < R_A \quad \langle t_h \rangle \gg R_A$

accardi@jlab.org

Can we measure the production time = quark lifetime?

1) Hadron quenching vs. z_h

Red: absorption model [A.A., et al., NPA 761(05)67]

Blue: energy loss model with SW quenching weights (see also K.Zapp) [A.A., Acta.Phys.Hung. '06 & PRC '07]

Both describe the data: no info on parton lifetime

Medium geometry is crucial to describe the data

- It is accounted for in the same way in both models
- ✤ Both have the same A^{2/3} dependence [A.A., EPJC 2007]

2) Scaling of R_M – basic idea A.A., PLB B649 (07) 384

 R_M should scale with $\tau = \tau(z_h, v)$ not with z and v separately

$$R_M = R_M [\tau(z_h, \nu)]$$
 with $\tau = C z_h^{\lambda} (1 - z_h) \nu$

• "Scaling exponent" λ can distinguish absorption and energy-loss

$$\langle t_p \rangle = f(z_h)(1-z_h) \frac{z_h \nu}{\kappa} \approx \tau(z_h,\nu)$$

energy _____ conservation

Lorentz boost

• Long quark lifetime, energy loss: $\lambda \le 0$ radiated energy: $\varepsilon < (1 - z_h) v$

energy conservation

0.5 Z

0.6

0.4

0.2

0

2) Scaling of R_M – χ² fits <u>A.A.</u>, PLB B649 (07) 384

• Formation-time scaling for pions!

$$\langle t_p \rangle \approx C \, z_h^{0.5} (1 - z_h) \, \nu$$

Hadronization starts inside the nucleus!

How much inside?

3) pT - broadening [A.A., nucl-th/0808.0656]

 Let's assume no energy loss for a moment:
 In prehadron stage, no broadening: elastic scattering very small

→ Incoherent partonic scattering: $\Delta \langle p_T^2 \rangle$ linear in quark in-medium path

 $\Delta \langle p_T^2 \rangle \propto \langle t_p \rangle \approx C \, z_h^{0.5} (1 - z_h) \, \nu$

It should:

- 1) rise with A^{1/3} until $\langle t_p \rangle \sim R_A$, then level off
- 2) decrease as $z_h \rightarrow 1$
- 3) rise with v, then level off
- 4) possibly, decrease with Q² (if $\langle t_p \rangle \propto \nu/Q^2$)

 $\Delta \langle p_T^2 \rangle = \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_D$

3) pT - broadening [A.A., nucl-th/0808.0656]

Durham, 14 Apr 2009

Let's assume no energy loss for a moment:

 $\Delta \langle p_T^2 \rangle \propto \langle t_p \rangle \approx C \, z_h^{0.5} (1 - z_h) \, \nu$

It should: 1) rise with $A^{1/3}$, then level off

50 100 150 200 25 Mass number (JLab/HERMES data shifted for better view)

JLAB preliminary, Will Brooks, Trento workshop

250

27

accardi@jlab.org

3) pT – broadening [A.A., nucl-th/0808.0656]

It should:

1) rise with $A^{1/3}$, then level off \bigcirc

2) decrease as $z_h \rightarrow 1$

3) rise with v, then level off ??

HERMES prelim.	$\langle Q^2 \rangle \; [\text{GeV}^2]$	$\nu~[{\rm GeV}]$	$\langle z_h \rangle$	$\langle t_p \rangle$ [fm]
$\langle \Delta p_{Th}^2 \rangle$ vs ν	2.1 2.5 2.6 2.4	$8.1 \\ 12.0 \\ 15.0 \\ 18.6$	$\begin{array}{c} 0.48 \\ 0.42 \\ 0.40 \\ 0.36 \end{array}$	$ \begin{array}{c} 2.4 \\ 3.7 \\ 4.6 \\ 5.8 \end{array} $

accardi@jlab.org

3) pT – broadening [A.A., nucl-th/0808.0656]

• Signals of partonic dynamics beyond production time & multi-scattering

3) pT – broadening [A.A., nucl-th/0808.0656]

Medium-enhanced DGLAP evolution? (see talk by K.Zapp)

[Ceccopieri et al. PLB'08; Armesto et al. JHEP'08; Domdey et al. arXiv:0802.3282]

 $(\Delta p_{\perp}^2)_h(Q^2) = (\Delta p_{\perp}^2)_h(\bar{Q}^2) + z_h^2 \nu \rho_0 \langle \sigma q_{\perp}^2 \rangle \left(\frac{1}{\bar{Q}^2} - \frac{1}{Q^2}\right)$ [Domdey et al., arXiv:0812.2838]

NLO effects ?

struck q at large x_B (large Q²)

struck $q\bar{q}$ at small x_B (small Q²)

Colored dipoles with $t_p \sim 0 t_{cn} \sim (1-z)v$??

accardi@jlab.org

4) Correlations between x_B and Q² [A.A., nucl-th/0808.0656]

◆ For example: if Lund string model for $\langle t_p \rangle$ is valid,

 $Q^{-2}\Delta \langle p_T^2 \rangle_{x_B\text{-bins}} \approx \text{const.}$ $x_B\Delta \langle p_T^2 \rangle_{Q^2\text{-bins}} \approx \text{const.}$

Deviations from such scaling are going to expose the underlying physics:

	$Q^{-2}\Delta \langle p_T^2 \rangle_{x_B}$	$x_B \Delta \langle p_T^2 \rangle_{Q^2}$
model	vs. Q^2	vs. x_B
$t_p \propto \nu/\kappa$ LO	\rightarrow	\leftrightarrow
mDGLAP (1)		\leftrightarrow
NLO vs. LO (2)	\leftrightarrow	\uparrow
colored h_c^* (3)		\leftrightarrow
$t_p \propto \nu/Q^2$ color dipole [11]		\leftrightarrow

Two-particle correlations at HERMES

\rightarrow Double hadron attenuation R_2

in A+A = "same-side correlations", (akin to jet yield on top of ridge)

accardi@jlab.org

 e^+

Two-particle correlations at HERMES

Small A-depence: surface bias?

 $z_2 \le z_1 \; ; \; z_1 \ge 0.5$

 $R_2(z_2)$

 $z_i^{\rm NLO} = E_i^h / \nu_i > z_i^{\rm LO}$

 $= \frac{\frac{N_1}{N_2(z_2)}}{A}$

more absorption: hard scattering for observed h is close to surface

From nDIS to Heavy-lons

Cold quenching in p+A collisions A.A., PRC76 (07) 034902

→ At low \sqrt{s} , or negative η , a parton travels slowly through the target nucleus, when seen in the nucleus rest frame:

If parton is slow enough (small v) the hadron will be quenched in the cold nucleus by the same mechanism that quenches it in nDIS.

accardi@jlab.org

Cold quenching in p+A collisions A.A., PRC76 (07) 034902

♦ Use Q² = p_T²(1 + e^{y₁-y₂) $\nu = \frac{p_T \sqrt{s}}{2M} e^{y_1}$ *z_h = z*in any hadron quenching model validated by HERMES R_M data *e.g.*, energy loss with SW quenching weights [AA,]}

For A+A at $\eta = 0$, suppression comes from both nuclei $\Rightarrow \sim$ squared:

Cold quenching in target nuclei not negligible in A+A at SPS: easily competes with quenching from hot medium

accardi@jlab.org

Parton lifetime in hot QCD matter – 1

- Why is η as much suppressed as π in Au+Au ?
 - points towards long lived quark
 - but nDIS analysis suggests π formed on short time scales

◆ Is it so also in nDIS? [η is heavier ⇒ hadronizes earlier, larger x-sec]
 ✓ measurement possible at CLAS (low Q²), EIC (high Q²)

accardi@jlab.org

Parton lifetime in hot QCD matter - 2

Consistency of HERMES + EMC data selects linear f(t)~t [Gallmeister, Mosel NPA'08]

Parton lifetime in hot QCD matter - 2

[Cassing, Gallmeister, Greiner NPA '04; Cassing, Gallmeister NPA '05]

Way too little suppression: long lived partons in QGP?

Why do partons seem short lived in cold QCD matter, but long lived in hot QCD matter?

Perspectives at the EIC

Present and future e+A facilities

The EIC

high luminosity ≥ 100 × HERMES
small x, large v, large Q² reach
It will test /extend HERMES/JLAB
cross-check results
multi-differential observables
2-particle correlation (h-h, γ-h, ...)
many more channels
It is unique: tests of parton dynamics

	MAN	UEL	s-eRI	IIC	eRH	IIC	ELI	IC	LHe	C
	Ca	e	Au	e	Au	e	Ca	e	Pb	e
E [GeV/A or GeV] $L_{peak} [10^{33} \text{ cm}^{-2} \text{s}^{-1}]$	7.5	3	100	2	100 1	20	75 10	0 7	2750 1.0	70)

EIC

The EIC – large v, Q^2 , W^2

Large v-range : 10 < v < 1600 GeV
 hadrons formed well outside of the nuclear medium
 effects due to parton propagation can be experimentally isolated

New access to p_T-broadening studies
 fundamental tests of pQCD energy loss
 study medium modification of DGLAP evolution
 test parton shower algorithms in Monte-Carlo generators (!!)

Heavy flavors:

E.g., interplay of radiative and collisional parton energy loss (big deal for heavy quarks at RHIC, LHC)

J/psi "normal" absorption in clean environment

Plus:

- Jet shape modifications, dijets, γ +jet, dihadron correlations, ... γ vs. π, baryon fragmentation, small-x & CGC, ...

EIC vs. HERMES

[Accardi, Dupré, Hafidi, EIC e+A note]

 $R_M^h(z) = \frac{\frac{1}{N_A^{DIS}} \frac{dN_A^h(z)}{dz}}{\frac{1}{N_D^{DIS}} \frac{dN_D^h(z)}{dz}}$

- Simulation with PYTHIA 6.4.19
 no nuclear effect yet
 10 weeks of beam at eRHIC
- High statistics:
 from 2D to 5D distributions
- \Rightarrow Large reach in p_T and Q^2 (x_B)
- ◆ Large range in v
 - small v hadronization inside A
 large v precision tests of QCD parton en. loss, DGLAP evolution, parton showers (Simulations courtesy of R.Dupré) accardi@jlab.org

Conclusions

- * Quark lifetime:
 - \rightarrow rather short in cold matter seems, O(R_A)
 - but long in hot matter at RHIC a QGP signal ???
- * In nDIS, pT-broadening is next theoretical challenge
 - test of space-time evolution of hadronization
 - <u>best place to test</u>: pQCD energy loss, DGLAP, MC parton showers
- 2-hadron correlations little studied
 - role of NLO hard scatterings
 - hadron-photon correlations interesting

★ At the EIC:

- cross-check / improve HERMES, CLAS
- many new channels (jets, heavy flavors, ...)
- Iong parton lifetimes: precision study of pQCD en.loss, DGLAP
- opportunities for theoretical developments

need Monte-Carlo(s)
for cold QCD matter!!

1) The "A^{2/3} power law"

A-dependence of R_M does not test dominance of partonic or prehadronic physics: no info on parton lifetime

accardi@jlab.org

Initial state parton energy loss in p+A / A+A

Initial & final state cold energy loss in p+A / A+A :

Initial state energy loss can be large [Vitev PRC'07]
 test models against DY data (but beware nuclear effects in target w.f.)

Needs unified energy loss formalism for DY, nDIS, h+A

accardi@jlab.org

Formation time estimates 1 – energy loss models

• Twist-4 modified Fragmentation Fns. [Wang&Guo '00, Wang & Wang '02]

Quark energy loss à la BDMPS [Arleo '02]

51

accardi@jlab.org

Effect of medium geometry approximations

Example: energy loss model with SW quenching weights

Correct geometry needed at qualitative & quantitative levels

The EIC - jet physics

★ First time for jet physics in e+A

map out observables as a function of parton energy

- ★ Tests of energy loss models:
 - e.g., modification of jet shapes in cold nuclear matter [Borghini, Wiedemann, '06]

light-quark jets vs. heavy-quark jets vs. gluon jets
 dijets, γ-jet correlations, ...

accardi@jlab.org

The EIC - small x

★ Increased production of heavy flavors

- ★ heavy quarks ⇒ D, B mesons◆ "heavy quark puzzle" at RHIC
- * J/ ψ "normal suppression"
 - J/ ψ , ψ ', χ suppression pattern
 - theoretically and experimentally cleaner in e+A
- back-to-back partons
 - "away-side" correlations: hadron-hadron, γ-hadron

The EIC – large Q² range

- ★ Access to true perturbative QCD regime
- Color transparency
- * Q^2 dependence of mentioned observables
 - is p_T -broadening going to plateau at large Q^2 ?
- ★ Super fast quarks in nuclei:
 - DIS regime at $x_B \gg 1$
 - exotic mechanisms
 - short-range nucleon correlations
 - 6-, 9-, ..., *n*-quark bags

The EIC – large W²

* Heavy mesons from fragmentation, large rate

- → η vs. π attenuation (no difference at RHIC)
 - low- $\nu \Rightarrow \eta$ is heavier, hadronizes earlier
 - high-v ⇒ same valence, same partonic effects?
- role of Q² (at RHIC, Q² ~ 10-50 GeV²)
 extend to strange / charm sector
- ★ Baryons from fragmentation
 - study baryon transport
 - investigate baryon anomaly seen in fixed-target e+A, in p+p through A+A
 - needs a good variety of baryons
 p, Λ, strange and charmed, ...

The EIC – large W²

 Heavy-quark energy loss and hadronization of D, B mesons in the spotlight at RHIC, big deal at LHC
 measure D, B in e+A !

★ At HERMES

Iuminosity is too low for D meson

- ★ At Jlab 12 GeV
 - high luminosity may compensate for low-v and large-x (and PID)
 - chances for D meson measurement close to but not zero

★ Needs an Electron-Ion Collider!

Measurements at HERMES

proton anomaly!

analogous to "baryon/meson anomaly" in p+p, p+A and A+A what do they have in common, if anything?

accardi@jlab.org

Results – E_{lab} = 27 GeV

2) Scaling analysis - example A.A., PLB B649 (07) 384

Results – E_{lab} = 12 \text{ GeV}

pions are still positive! confirms results at 27 GeV

3) p_T – broadening

<p_T²> broadening [Kopeliovich et al., NPA 740(04)211]

- 1) Directly proportional to quark's in-medium path
- 2) Can measure prehadron formation time t^*
- 3) Detect hadronization inside or outside the nucleus

$$\Delta \langle p_T^2(L) \rangle = 2C(s) \int_0^L dz \,\rho_A(z), \quad \text{where:} \quad C(s) = \frac{d\sigma_{\bar{q}q}(r_T, s)}{dr_T^2} \Big|_{r_T=0}$$

 \rightarrow Can be cross-checked by the scaling analysis of R_M

accardi@jlab.org

Durham, 14 Apr 2009

dipolo y soct

3) p_T – broadening

"Model independent" measurement of <l*>=lp [Kopeliovich,Nemchik,Schmidt, hep-ph/0608044]

$$\Delta p_T^2 = \frac{2C z_h^2}{A} \int d^2 b \int_{-\infty}^{\infty} dz \,\rho_A(b,z) \int_{z}^{z+l_p} dz' \,\rho_A(b,z')$$

where

dipole cross-section

$$C(s) = \left. \frac{d\sigma_{\bar{q}q}(r_T, s)}{dr_T^2} \right|_{r_T = 0}$$

 fit *l_p* to data for each nucleus
 determine *C* by minimizing differences of *l_p* among nuclei

