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Hard Probes and HIC

• Energetic/massive probes are produce early prior to the 
medium formation (E, M>>T). Their production is 
unchanged by the medium.  

• For sufficiently hard processes the production 
mechanism is under theoretical control. 

• The modification of the properties of the probe in 
nucleus-nucleus collision is a consequence of the 
interaction with the medium.

• They serve as a diagnostic tool of the medium.
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From hydro 
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Energy Loss (1)
Massive (slow) Particles 

• Slow velocity in the medium ⇒ radiation can be neglected.

• The energy loss is dominated by collision like processes 
(collisional energy loss)

• The lost energy is absorbed by the medium.

• The effective description for sufficiently massive particles is 
Brownian motion.
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Heavy Quarks at RHIC

• Heavy Quarks are strongly 
suppressed and they flow. 

• A Langevine model provides an 
rough description of data.
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• A more involved model involving 

resonances yields (Hess et al.):
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(From fit)

• The diffusion constant is smaller than perturbation theory 
estimates.
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HQ at Strong Coupling

• HQ propagation (Wilson line) is given by a classical string 
stretching down to the horizon.
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Horizon

• At finite velocity the string bends behind the quark end point

• Work must be done against the string tension: there is a flux 
of momentum from the boundary to the bulk =Energy loss 

• The drag behavior is valid for ultra relativistic quarks! 
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• The noise leads to transverse fluctuations of the string. The  
broadening is obtained from small fluctuations of the string.

Broadening

Horizon
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• The fluctuations below the scale z=T/√γ are causally 
disconnected from those above ⇒ world sheet horizon.
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• At zero velocity it coincides with Langevine prediction.

• There is a strong velocity dependence of the broadening.

• The full Langevine equation can be found by studying the 
string fluctuations induced by the horizon (Hawking radiation)

JCS, Teaney; 
Gubser

Son & Teaney; de Boer, Hubeny; Rangamani, Shigemori; Glecold, Iancu, Mueller
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• The full Langevine equation can be found by studying the 
string fluctuations induced by the horizon (Hawking radiation)

JCS, Teaney; 
Gubser

Son & Teaney; de Boer, Hubeny; Rangamani, Shigemori; Glecold, Iancu, Mueller



Applications
• The (zero velocity) diffusion constant is small.
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• The thermalization time of HQ is short

opposite the motion. A slightly tedious calculation leads to

dp1

dt
=

√
−gP r

x1 = −
√

1 − v2

2πα′
Gx1νg

rα∂αXν = −r2
H/L2

2πα′

v√
1 − v2

. (12)

Now we recall two useful formulas:1

L4 = g2

Y MNα′2 T =
rH

πL2
, (13)

where T is the Hawking temperature, whose dual description is nothing but the temperature

of the plasma. Plugging (13) into (12) leads to the final result for the drag force:

dp1

dt
= −

π
√

g2
Y MN

2
T 2

v√
1 − v2

. (14)

It is interesting to express the result (14) in terms of the momentum p1 and mass m of

the external quark, even though both are formally infinite:

dp1

dt
= −

π
√

g2
Y MN

2
T 2

p1

m
. (15)

Continuing in this somewhat formal spirit, one can integrate (15) to find

p1(t) = p1(0)e−t/t0 t0 =
2

π
√

g2
Y MN

m

T 2
. (16)

Keeping previous remarks about uncontrolled approximations firmly in mind, consider the

following equivalent ways of expressing t0 in physical units:

bottom: t0 ≈ 2 fm/c
m/mb

√

g2
Y MN/10 (T/300 MeV)2

charm: t0 ≈ 0.6 fm/c
m/mc

√

g2
Y MN/10 (T/300 MeV)2

.

(17)

It might be illuminating to compare these relaxation times with the rate of energy loss of

bottom and charm quarks moving through the QGP.
1See for example [22]. But note that modern usage is g

2
Y M

= 4πgstring rather than g
2
Y M

= 2πgstring,
leading to factors as written in (13).
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• The HQ dynamics is dominated by the dynamical scale

κT = γ1/2
√

λπT 3 (0.40)

κL = γ5/2
√

λπT 3 (0.41)

τterm =
1

ηD
(0.42)

Q =
√

γT (0.43)

4

(Argued to be the saturation scale)

• The HQ feels a lower effective temperature 

κT = γ1/2
√

λπT 3 (0.40)

κL = γ5/2
√

λπT 3 (0.41)

τterm =
1

ηD
(0.42)

Q =
√

γT (0.43)

Tws = T/
√

γ (0.44)

4

• The calculation is not valid for

κT = γ1/2
√

λπT 3 (0.40)

κL = γ5/2
√

λπT 3 (0.41)

τterm =
1

ηD
(0.42)

Q =
√

γT (0.43)

Tws = T/
√

γ (0.44)

MQ <
√

γ
√

λT (0.45)

4

• The string action becomes imaginary.
• The HQ cannot move faster than the local speed of light.

The strength of the states decays (radiation?)

• The scale grows with energy ⇒ high energy should be 

perturbative

Gubser

Mueller et al., 
Iancu

JCS, Teaney



Energy Loss (1I)
Energetic Particles 

• Dominated by radiation: emission of hard modes (gluons)

• Soft kicks (~T) in the medium lead to hard (k>>T) gluons

• The energy is degradated: not absorbed by the medium

• At high energy the radiation is determined by the re-
scattering of the radiated gluon. 

• The spectrum is determined by the gluon
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where qi = pi − pi−1, and Ai is shorthand for

Ai(qi) = T aAa
i (qi) = −2igE0T

aV a
i (qi) . (11)

The differential cross section averaged over initial and summed over final
colors of both projectile and target partons reduces to the familiar form for
low transverse momentum transfers:

dσi/dq2
⊥i ≈ Ci

4πα2

(q2
⊥i + µ2)2

, (12)

where the color factor is

Ci =
1

ddi
Tr(T aT b)Tr(T a

i T b
i ) = C2C2i/dA . (13)

For SU(3), the number 2Ci gives the usual color factors 4/9, 1, 9/4 for
qq, qg, gg scattering respectively. In our notation, the angular distribution
is given by

dσi/dΩi =
1

ddi
Tr|Ai(qi)|2/(4π)2 . (14)

2.2. GLV Formalism

In Refs.54,55 a systematic recursive graphical technique was developed and
translated into an algebraic operator method. The goal was to compute
medium induced gluon radiation amplitudes of the type shown in Fig. 12.
The exponential growth of the number of graphs with the number of in-

M5,1,10

p

k,c

q1,a1 q2,a2 q3,a3 q4,a4 q5,a5

tt0 t1 t2 t3 t4 t5

!=(0,0,1,0,1)
"

l=(0 2  + 0 2  + 1 2  + 0 2  +1 2   ) ⁄ 2 21 2 3 4 5

Fig. 12. Induced radiation amplitude54 contributing to fifth order and higher orders in
the opacity expansion of QCD energy loss in the GW model72. The crosses denote color
screened Yukawa interactions on a scale µ. The blob is the initial hard jet amplitude.
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Jet Quenching
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Fig. 14. Left: Nuclear modification factor, RAA, for light hadrons in central AuAu
collisions [58]. Data from [60]. Right: RAA for non-photonic electrons with the
corresponding uncertainty from the perturbative benchmark on the relative b/c
contribution [61]. Data from [62, 63]

In the massless case, the only parameters in the medium-induced gluon
radiation are the transport coefficient and the length of the traversed medium.
The later is given by the geometry of the system while the formed is a fitting
parameter – all the medium properties are encoded in q̂, so that measuring
it we will learn about the properties of the medium. Although the geometry
could, at first sight, seem a trivial feature in the calculation, different ge-
ometries lead to different values of the extracted properties of the medium.
In Fig. 14 the suppression computed with a static medium and medium
density given by a Wood-Saxon parametrization is presented. The fit to the
light meson suppression leads to quite large values of the transport coeffi-
cient [58, 59]

q̂ ! 5 . . . 15GeV2/fm (109)

but determined with a large uncertainty. This feature can be understood
as due to the dominance of surface emission: those particles produced close
to the surface have also large probability to exit the medium essentially
unaffected – see p0 in Fig. 13. In order to reproduce the large suppression
observed, the value of q̂ needs to be large, but at some point increasing this
value translates only into a small reduction of the skin from which the par-
ticles abandon the medium unaffected. It’s worth mentioning here that the
use of more sophisticated medium profiles, as given e.g. by hydrodynamical
simulations, could lead to slightly smaller results [65].

In the massive case, once the value of q̂ is known, the formalism pro-
vides a prediction with no extra free parameter. At present, the suppression
for charm or bottom mesons has not been directly measured. These quan-

11

Eskola, Honkanen, 
Salgado, Wiedemman 05

• The spectrum of hard particles is suppressed with respect to 
proton proton

• Radiative energy loss describes the suppression (one 
parameter fit)

• The extracted jet quenching parameter is large.
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Light Quarks in AdS/CFT

• The string endpoint can fall (no mass scale)

6

!6 !4 !2 0 2 4 6
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T x

u

u
h

FIG. 4: A typical falling string studied in this paper, plotted in blue at four different instants in time. The string is created
at a point and, as time passes, evolves into an increasingly extended object. Well after the creation event, but long before the
plunge into the horizon, the string profile approaches a universal null string configuration which is largely insensitive to the
initial conditions. Consequently, the string endpoint trajectories, shown in green and yellow, approach null geodesics.

scription of the early-time dynamics responsible for the
production of the quark-antiquark pair.

For reasonable falling string solutions, we will see that
the endpoint motion is well-approximated by the trajec-
tory of a light-like geodesic. Equations for null geodesics
in the AdS-BH geometry are easy work out. For motion
in the x-u plane, one finds

(
dxgeo

dt

)2

=
f2

ξ2
, (4.5a)

(
dugeo

dt

)2

=
f2

(
ξ2 − f

)

ξ2
, (4.5b)

where ξ is a constant which determines the initial incli-
nation of the geodesic in the x-u plane and, more funda-
mentally, specifies the conserved spatial momentum asso-
ciated with the geodesic, f(u)−1dxgeo/dt = ξ−1. More-
over, we have

(
dxgeo

du

)2

=
1

ξ2 − f
. (4.6)

From this equation, one sees that geodesics which start
close to the boundary, at u = u∗ → 0, can travel very far
in the x̂ direction provided ξ2 ≈ f(u∗) → 1. In particu-
lar, the total spatial distance such geodesics travel before
falling into the horizon scales like u2

h/u∗.
We will be interested in string configurations where the

spatial velocity of the string endpoint is close to the local
speed of light for an arbitrarily long period of time (since
this will maximize the penetration distance). Because
open string endpoints must always travel at the speed of
light, the velocity in the radial direction must be small
and correspondingly, the radial coordinate of the string
endpoints will be approximately constant for an arbitrar-
ily long period of time. As the string endpoints become
more and more widely separated, the string must stretch
and expand. For reasonable string profiles, this implies
that short wavelength perturbations in the initial struc-
ture of the string will stretched to progressively longer

wavelengths, resulting in a smooth string profile at late
times.3 Moreover, as the string endpoints separate, the
middle of the string must fall toward the event horizon.
This occurs on a time scale ∆t of order uh. (This scale
sets the infall time of a particle released at rest at the
boundary, or of a null geodesic with ξ > 1.)

The origin of this behavior can also be understood as
follows. Consider the string at some time t shortly after
the creation event. It will have expanded to a size ∼ t.
By construction, one half of the string will have a posi-
tive large momentum in the spatial x̂ direction, while the
other half has negative x̂ momentum. The spatial mo-
mentum density must be highly inhomogeneous so that
the two endpoints move off in opposite directions. As
time progresses, the parts of the string with the highest
momentum density will remain close to a string endpoint.
Portions of the string with low spatial momentum den-
sity will lag behind the endpoints (in terms of motion
in the x̂ direction) and fall relatively unimpeded toward
the horizon. Thereafter, the outer parts of the string will
continue moving in the ±x̂ direction while the endpoints
slowly fall. This general behavior is clearly seen in Fig. 4 .

With the above qualitative picture in mind, we now
turn to the explicit analysis. To simplify the discussion,
focus attention on one half of the string. We may choose
worldsheet coordinates τ = t and σ = u, so that the
embedding functions are determined by a single function
x(t, u). The domain in the (t, u) plane in which x(t, u)
is defined is bounded by a curve U(t) which defines the
trajectory of the string endpoint. The location of this

3 “Unreasonable” string profiles can have structure on arbitrarily
short wavelengths. While the initial structure will be inflated
as time progresses, because the string endpoints can only travel
a distance of order u2

h/uc before reaching the horizon, one can
always cook up initial conditions such that fluctuations in the
string profile never become small during this time interval. We
will avoid such unreasonable initial conditions in this paper.

(Chesler, Jensen, Karch, Yaffe)

• It follows a light geodesic

• Starting the string at a given height is (qualitatively) related to 
virtuality of the pair 

• The initial profile of the string must be determined, there is 
freedom in the initial conditions

• When the end point falls in the horizon, the light quark is 
thermalized.



In Medium Propagation

• There is a maximum distance of propagation

2

It should be emphasized that we are concerned with
studying the propagation through the plasma of ener-
getic excitations which resemble well-collimated quark
jets. The open string configurations we consider may
be regarded as providing a dual description of dressed
quarks, with high energy, moving through a non-Abelian
plasma. We are not studying the result of a local current
operator acting directly on the strongly coupled N = 4
SYM plasma. (See, however, Ref. [36].) Our motiva-
tion is similar to that of Ref. [17], in which weak cou-
pling physics in asymptotically free QCD is envisioned
as producing a high energy excitation, whose propaga-
tion through the plasma is then modeled by studying
the behavior of the same type of excitation in a strongly
coupled N = 4 SYM plasma.

The energy loss rate for a heavy quark depends only
on the quark’s velocity, the value of the ’t Hooft coupling
λ, and the temperature of the plasma through which the
quark is moving [13]. In other words, for very heavy
quarks which slowly decelerate, the velocity is the only
aspect of their initial conditions which influences the en-
ergy loss rate. This turns out not to be the case for
light quarks. Initial conditions for a classical string in-
volve two free functions: the initial string profile and
its time derivative. As we discuss in detail below, the
instantaneous energy loss rate of a light quark depends
strongly, in general, on the precise choice of these ini-
tial functions. In the dual field theory, this reflects the
fact that any complete specification of an initial state
containing an energetic quark must also involve a char-
acterization of the gauge field configuration. In the per-
turbative regime, one can easily see that the interactions
of heavy particles with a gauge field are spin-independent
(up to 1/M corrections), but interactions of relativistic
particles are spin-dependent even at leading order. So
it is perhaps unsurprising that the energy loss of a light
projectile also depends on the configuration of the glu-
onic cloud surrounding the projectile in a non-universal
fashion.

One quantity which is rather insensitive to the pre-
cise initial conditions of the string is the maximum dis-
tance ∆xmax(E) which a quark with initial energy E can
travel. It should be emphasized that we are consider-
ing effectively on-shell quarks which can travel a large
distance ∆x before thermalizing. The maximum pene-
tration depth ∆xmax grows without bound as the energy
E increases.

We numerically compute the penetration depth ∆x for
many different sets of string initial conditions, and find
that the maximum penetration depth does indeed scale
like E1/3. Our results are illustrated in Fig. 1 , where
the logarithm of the penetration depth is plotted as a
function of the logarithm of the initial quark energy for
many different sets of initial conditions. As is evident
from the figure, the penetration depth of a light quark is
bounded by a curve ∆xmax = const.× E1/3.

We also demonstrate the scaling relation ∆xmax ∼
E1/3 analytically. As discussed in Ref. [33], strings which

10.5 11.0 11.5 12.0 12.5 13.0

2.8

3.0

3.2

3.4

3.6

ln
(T

∆
x
)

ln(E/(T
√

λ))

FIG. 1: A log-log plot of the quark stopping distance
∆x as a function of total quark energy E for many falling
strings with initial conditions of the form shown in Eq. (4.55).
All data points fall below the red line given by ∆x =

(0.526/T )
`
E/T

√
λ

´1/3
.

correspond to long-lived massless quarks are approxi-
mately null strings. A strictly null string is one whose
worldsheet metric is everywhere degenerate. The qual-
itative origin of this connection is easy to understand.
Strings which correspond to light quarks fall into the
event horizon. As they fall they become more and more
light-like and hence closer and closer to a null configura-
tion as time progresses. The profile of the null string is
almost independent of the initial conditions used to cre-
ate the string — for the quasiparticle excitations studied
in this paper, the corresponding null strings are speci-
fied by two numbers only, an initial inclination and ra-
dial depth. By analyzing strings corresponding to light
quarks as small perturbations away from null string con-
figurations, we show that the total distance a quark
can travel must be bounded by a maximum distance
∆xmax = (C/T )(E/T

√
λ)1/3 for some O(1) constant C.

We numerically confirm that strings corresponding to
long-lived light quarks are, in fact, close to being null,
and obtain an estimate of the constant C.

Although the endpoint motion of our string solutions
is well approximated by appropriate light-like geodesics,
consistent with the discussion of Ref. [33], we find that
the relationship between the parameters of the geodesic
and the string profile and energy is more complicated
(and rather different) than the surmises presented in
Ref. [34]. This will be discussed further in Section V .

In addition to studying the penetration depth, we also
examine the instantaneous rate of energy loss, dE/dt.
For light quarks the energy loss rate shows non-universal
features and is sensitive to initial conditions. For the
states we study, we find that it typically increases with
time during the period when the dressed quark is a well-
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FIG. 7: The instantaneous energy loss rate, dE/dt, of a
highly energetic quark, normalized by its initial energy E0.
Instead of decreasing with time, as might have been expected,
the light quark energy loss rate actually increases. At times
near the thermalization time, which for this particular exam-
ple is ttherm ∼ 24/T , the instantaneous energy loss rate grows
like dE/dt ∼ 1/

√
ttherm − t.

points as they approach the horizon.8 As is evident from
Fig. 7 , the energy flux down the string does not decrease
in a power-law fashion as a naive E2/3 scaling of dE/dt
would suggest, but rather increases monotonically until
the thermalization time!

We stress that the precise form of the energy flux
down the string is sensitive to the initial conditions used
to create the string. This is easy to understand from
the approximate analytic string solutions discussed in
Section IVA . These approximate solutions, which cor-
respond to long-lived quarks, are perturbations of null
strings. The energy flux diverges for a null string. The
finite flux of the complete solution is determined by the
function ψ(z(t, u)) [defined in Eq. (4.22)] which charac-
terizes the perturbation δx(t, u) on the null string. This
function is not universal, and depends on the initial con-
ditions used to create the string.

However, the late time behavior of the instantaneous
energy flux is universal. As is evident from Fig. 7 , near
the thermalization time the energy flux down the string
dramatically increases. This may be understood from our
approximate string solutions. The energy flux down the
string scales like (−γ)−1/2 where γ is the determinant of
the worldsheet metric. For strings which are small per-
turbations of null strings, Eq. (4.32) shows γ is propor-
tional to the function ψ(z(t, u)) characterizing the per-
turbations. Near the thermalization time ttherm = u2

h/u∗

8 More precisely, as the string endpoints approach the horizon, the
strong gravitational field of the black hole pulls the electric field
lines, which are sourced by the string endpoints, towards the
horizon. This results in the spreading out of the electric field
lines and hence a spreading out of the induced baryon density
on the boundary.

and at a radial coordinate u corresponding to a fixed
distance ∼ 1/T from the string endpoint, the function
z(t, u) behaves like

z(t, u) =
t− ttherm

u∗
+O(u∗/uh), (5.2)

and hence becomes very small as t→ ttherm. By the open
string boundary conditions (4.7) and (4.25), the function
ψ(z) must vanish at the string endpoint which, as dis-
cussed in Section IV A corresponds to z = 0. Finiteness
of the string energy (4.33) requires that ψ′(0) be non-
zero. Consequently, near the endpoint one may approx-
imate ψ(z) ≈ ψ′(0) z. Neglecting the O(u∗/uh) correc-
tions in Eq. (5.2), one finds

π1
t ∼

1√
ttherm − t

. (5.3)

We have numerically confirmed the above scaling in the
data shown in Fig. 7 .

The late-time behavior (5.3) implies that after travel-
ing substantial distances through the plasma, the ther-
malization of light quarks ends with an “explosive” trans-
fer of energy to the plasma. This should be contrasted
with the thermalization of heavy quarks, where the en-
ergy loss rate rapidly falls as the quark’s velocity (or mo-
mentum) decreases.

In the gravitational description, the scaling (5.3) be-
comes valid when the string endpoint starts to fall toward
the horizon (i.e., when dU/dX ceases to be small com-
pared to one). As shown in Fig. 6 , this happens relatively
abruptly, so we expect the creation of large amounts of
gravitational radiation to propagate to the boundary and
induce a large perturbation in the SYM stress tensor cor-
responding to this final burst of energy. However, we
emphasize that because the energy flux flowing down the
string is changing rapidly at late times, retardation ef-
fects in the gravitational bulk-to-boundary problem can-
not be neglected, implying that the result (5.3) for the
energy flux down the string cannot be directly equated
with the field theory energy flux through a sphere SR. It
would, of course, be interesting to compute directly the
energy flux in the plasma produced by the light quark
jet as it thermalizes. Evaluation of the required bulk-to-
boundary problem is currently in progress.

It is interesting to speculate on the implications of our
results for heavy ion collisions. Hard partons produced
in the early stages of heavy ion collisions can traverse
the resulting fireball and deposit energy and momentum
into the medium. If the partons are moving supersoni-
cally, their hydrodynamic wake will contain a Mach cone
whose propagation can influence the distribution of par-
ticles associated with a jet. If the hard parton under
consideration is a very massive quark with mass m, the
results of Ref. [13] predict an energy loss rate of the form
dE/dx = dp/dt = −µp where, for strongly coupled SYM,
µ = π

2

√
λ T 2/m. Therefore, the energy loss rate falls ex-

ponentially with time — heavy quarks in strongly cou-

(Chesler, Jensen, Karch, Yaffe)

• The propagation length depends on the string profile
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Different from
radiative Eloss

• There is a maximum distance of propagation

• The energy rate is not constant: it is larger at later times.



Caveats

• In N=4 all modes, hard and soft, are strongly coupled

• There are not long lived gluon quasipaticles:  there is not 
radiative loss in this sense

• In QCD the hard gluons are weakly coupled.

• Even if the soft sector is strongly coupled, the parent partons 
should be able to radiate long lived gluons.

• It is not clear what lessons to take from energetic probes in 
AdS/CFT

• A “hybrid” approach, even thought less rigorous might be 
more phenomenologically applicable.   
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Computing q in AdS/CFT

•  Gluon spectrum is modified by 
the in-medium propagation 

^

• This is given by the expectation value of a Wilson line. 

• The computation in AdS gives.

dp
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q̂QCD ≈ 6− 12 GeV2/fm (0.19)
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⇒
(plugging numbers)
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Liu, Rajagopal, Wiedemann

• The (hard) radiative vertex is 
perturbative

• However: 
It is not clear how to connect with the low momentum
A description of broadening at all scales is missing
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Recovering the lost Energy

• Associated high momentum hadrons are suppressed.
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〈ξ(t)ξ(t′)〉 = κδ(t − t′) (0.27)

D =
2T 2
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D =
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∆Φ (0.30)

3

• There is an enhancement of soft (medium scale) particles.

• The high energy particle modifies the medium (backreaction)

• There is an double peak structure at Δϕ≈π-1.2 rad.

• The mean pT in the double hump is comparable to the 
medium mean pT. 
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• The medium at RHIC behaves hydrodynamically

Conical Flow

• The propagation parton disturbs the medium by depositing 
energy.

• Partons are supersonic 
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• A mach cone is created moving at the angle  

• It is not clear wether a point particle can excite hydro modes 

Can we find a theory in which this happens?
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• This is no the only possible explanation (Cherenkov, large angle radiation, 
deflected jet...)

JCS, Shuryak, Teaney; 
Stocker; Muller, Rupert 

Renk; Neufeld.
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Sound at Strong Coupling

• Stress tensor associated to the quark

• Supersonic quarks lead to the formation of Mach cones

• The energy lost by the quark is quickly thermalized

• Hydrodynamics agrees with the computed fields up 
to a distance r≈1.5/T.

• Together with Mach cone a large momentum flow along 
the quark direction is produced.
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4

penetration depth, we imagine measuring x̄(t) at some
early time t∗. We then define the penetration depth ∆x
in the obvious manner as

∆x ≡ |x̄(∞)− x̄(t∗)| . (3.3)

On the gravitational side of the gauge/gravity corre-
spondence, the addition of a N = 2 hypermultiplet to the
N = 4 SYM theory is accomplished by adding a D7 brane
to the 10d geometry [37]. The D7 brane fills a volume
of the AdS-BH geometry which extends from the bound-
ary at u = 0 down to maximal radial coordinate um,
and wraps an S3 of the S5. The bare mass M of the
hypermultiplet is proportional to 1/um [13], so for mass-
less quarks the D7 brane fills all of the five-dimensional
AdS-BH geometry. Open strings which end on the D7
brane represent dressed qq̄ pairs in the field theory. In
the 5d geometry these strings can fall unimpeded toward
the event horizon until their endpoints reach the radial
coordinate um where the D7 brane ends.1 For sufficiently
light or massless quarks, um > uh and open string end-
points can fall into the horizon.2

The endpoints of strings are charged under a U(1)
gauge field AM which resides on the D7 brane. The
boundary of the 5d geometry, which is where the field
theory lives, behaves as an ideal electromagnetic conduc-
tor [38] and hence the presence of the string endpoints,
which source the D7 gauge field AM , induce an image
current density Jµ

baryon on the boundary. This is illus-
trated schematically by the cartoon in Fig. 3 . Via the

1 One should bear in mind that even when the radial position of
the string endpoints lies closer to the boundary than um, the
string endpoints are nevertheless attached to the D7 brane, al-
beit in the full 10d space. The embedding of the D7 brane is
determined dynamically by minimizing the D7 worldvolume. In
general, this means that the D7 brane wraps a 3-sphere inside
the S5 of the AdS-BH×S5 background geometry. This 3-sphere
varies in a non-trivial way as a function of the radial coordinate
of the AdS-BH geometry. For a hypermultiplet with non-zero
mass, the string endpoints must move on the internal S5 as they
fall down in the AdS-BH geometry, so that the string endpoints
remain on the D7 brane. But for massless hypermultiplets, the
corresponding D7 embedding is a simple product space, AdS-BH
×S3. In this case, it is consistent to have the entire string sit at
a fixed point on the S5 while it falls in the AdS-BH background.
Any additional motion of the string in the internal space will
only add to the energy of the string without affecting its stop-
ping distance and so will be of no interest for us — we want to
find strings which carry a minimal amount of energy for a given
stopping distance. In the large Nc limit, one can ignore the back-
reaction of the D7 brane on the background geometry and the
backreaction of the string on the D7, as well as potential insta-
bilities involving string breaking or dissolving into the D-brane.
These issues are discussed further in Section V .

2 Strictly speaking, in the coordinate system we are using no por-
tion of the string crosses the horizon at any finite value of time.
Due to the gravitational redshift, the rate of fall du/dt decreases
exponentially as one approaches the horizon. Nevertheless, it is
natural to speak of the string endpoint falling “into” or “reach-
ing” the horizon when u− uh # uh.

hMN

〈T µν〉 〈jµ〉

uh

0
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FIG. 3: A cartoon of the bulk-to-boundary problem at fi-
nite temperature. The endpoints of strings are charged under
a U(1) gauge field AM which lives on the D7 brane which
fills the AdS-BH geometry. The boundary of the geometry,
located at radial coordinate u = 0, behaves like a perfect
conductor. Consequently, the string endpoints induce mirror
current densities Jµ

baryon on the boundary. Via gauge/gravity
duality, the induced current density has the interpretation of
the baryon density of a quark. Similarly, the presence of the
string induces a perturbation hMN in the metric of the bulk
geometry. The behavior of the metric perturbation near the
boundary encodes the information contained in the perturba-
tion to the SYM stress-energy tensor caused by the presence
of the jet.

standard gauge/gravity dictionary [5, 6, 7, 8, 37], the in-
duced current density corresponding to each string end-
point has a field theory interpretation as the baryon cur-
rent density of a dressed quark.

The degree to which the baryon density is localized de-
pends on how close the string endpoint is to the bound-
ary of the 5d geometry. The farther the endpoint is away
from the boundary, the more the field lines of AM can
spread out, and hence the more delocalized will be the
induced image current Jµ

baryon. In the limit where the
radial coordinate U of the string endpoint is far from the
horizon, U $ uh, the baryon density will be localized
with a length scale ∼ U [33]. We note that the appear-
ance of the length scale U in the baryon density is natural
since, for U $ uh, it takes light an amount of time ∼ U
to reach the boundary.

If at time t∗ the string’s endpoint is at radial coordi-
nate u∗ $ uh, then x̄(t∗) approximately coincides with
the spatial position of the string endpoint xstring(t∗) [33].
The string endpoint can only travel a finite distance be-
fore falling into the black hole. The final spatial coordi-
nate of the string endpoint xstring(∞) will exactly coin-
cide with x̄(∞) [33]. We therefore have

∆x ≈ |xstring(∞)− xstring(t∗)| . (3.4)
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FIG. 3: Left—Position space plot of |x|∆E(x)/(T 3
√

λ) for v = 1/4. Right—Position space plot of |x|∆S(x)/(T 3
√

λ) for
v = 1/4. The flow lines on the surface are the flow lines of the energy flux ∆S(x). There is a surplus of energy in front of the
quark and a deficit behind it. Correspondingly, trailing the quark there is a stream of energy flux which moves in the same
direction as the quark. Note the absence of structure in ∆E(x) for distances |x|" 1/(πT ).

FIG. 4: Left—Plot of |x|∆E(x)/(T 3
√

λ) for v = 3/4. Right—Plot of |x|∆S(x)/(T 3
√

λ) for v = 3/4. The flow lines on the
surface are the flow lines of ∆S(x). There is a surplus of energy in front of the quark and a deficit behind it. Correspondingly,
trailing the quark there is a narrow stream of energy flux which moves in the same direction as the quark. A Mach cone, with
opening half angle θM ≈ 50◦ is clearly visible in both the energy density and the energy flux. Near the Mach cone, the bulk of
the energy flux flow is orthogonal to the wavefront.
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Sound at Strong Coupling

• Stress tensor associated to the quark
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• The energy lost by the quark is quickly thermalized

• Hydrodynamics agrees with the computed fields up 
to a distance r≈1.5/T.

• Together with Mach cone a large momentum flow along 
the quark direction is produced.
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Hadronization of the fields

• Hydro fields associated to the high energy partons are 
converted into hadrons

7
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FIG. 4: (Color online) Normalized (and background sub-
tracted) azimuthal away-side jet associated correlation after
Cooper-Frye freeze-out CF (φ) (see Eq. 9) for pQCD (top)
and AdS/CFT from [5] (bottom). Here CF (φ) is evaluated
at pT = 5π T0 ∼ 3.14 GeV and y = 0. The black line is for
v = 0.58, the magenta line for v = 0.75, and for the blue
line v = 0.9. The red line with triangles represents the Neck
contribution for a jet with v = 0.9.

volving CF freeze-out can only be circumvented either in
regions with high flow velocities and large gradients as in
the Neck zone [5], or by increasing pT to unrealistic high
values [3, 26].

One of the main differences between the two freeze-out
procedures we employed (in both AdS/CFT and pQCD)
concerns the relative magnitude of the contribution from
the Neck region to the final angular correlations: the
Neck region is much more important in CF than in the
bulk flow measure computed via Eq. (8). This is due to
the exponential factor in CF, which largely amplifies the
contribution from the small region close to the jet where
the disturbances caused by the heavy quark become rel-
evant.

VII. CONCLUSIONS

In this paper, we showed that the angular correlations
obtained after an isochronous Cooper-Frye freeze-out of

the wake induced by punch-through heavy quark jets (in
a static medium) in the Neufeld et al. pQCD model
of anomalous chromo-viscous hydrodynamics do not dis-
play a conical structure. This should be compared to
the conical-like structures seen after CF freeze-out of the
strongly-coupled AdS/CFT string drag model. We ex-
pect similar thermal broadening effects to occur if alter-
native coalescence/recombination hadronization models
[33, 34] are used. The isochronous hypersurface we used
is needed in order to compare AdS/CFT to pQCD since
AdS/CFT heavy quark solutions have only been com-
puted so far in a static medium. For realistic simulations
that can be compared to data, effects from the medium’s
longitudinal, transverse, and elliptic flow must be taken
into account as discussed in detail in [32].

Unlike AdS/CFT, the conical flow from the associated
nonequilibrium Neck zone in pQCD (see the red region in
the left panel of Fig. 2 and the red curve in Fig. 3) is too
weak to survive CF freeze-out. In both cases, the actual
Mach wakes do not appear after standard CF freeze-out.
Mach-like peaks are only observable in the sudden shat-
tering freeze-out scenario described in Eq. (8) in both
pQCD and AdS/CFT, in which thermal broadening is
entirely neglected.

The Neck region (in both pQCD and AdS/CFT) gives
the largest contribution to the total yield in CF freeze-out
while its contribution in the other extreme case involving
the bulk flow hadronization is not as relevant. This in-
dicates that the magnitude of the Neck’s contribution to
the final angular correlations is still strongly model de-
pendent. Nevertheless, our results suggest that conical
but non-Mach law correlations are much more likely to
appear in AdS/CFT than in pQCD.

We propose that the measurement of the jet veloc-
ity dependence of the associated away-side correlations
with identified heavy quark triggers at RHIC and LHC
will provide important constraints on possible pQCD
versus AdS/CFT dynamical non-Abelian field - plasma
(chromo-viscous) coupling models.
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(Betz, Gyulassy, Noronha, Torrieri)

• Cooper-Fry prescription: thermal distribution of particles 
boosted to the fluid rest frame

• A double peak structure is found
However it does not reflect the Mach angle
It is an effect of the near field, no hydrodynamic part.

• Caveats: It is not clear that thermal particle distribution 
describes the non equilbrated hadronization
             The parton may be absorved or out of the medium 
at the hadronization time



• The AdS/CFT correspondence can be used to describe 
probes in strongly coupled plasmas

Conclusions

• It might be useful to understand those processes 
dominated by soft exchanges (such as HQ drag)

• It lacks radiation of long lived hard partons: the application 
to loss of energetic particles is murky. 

• At strong coupling, the medium induced disturbance 
thermalizes quickly.

• This observation reinforces the phenomenological 
description of hydrodynamical response to particle 
propagation.


