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Collisions

Introduction

Definition of jet quenching

at RHIC: suppression of high-p, particles
at LHC: modification of the jet fragmentation pattern

in the presence of a dense medium
Reasons for studying sub-leading fragments

» will be accessible at LHC

» likely to discriminate between different microscopic
mechanisms cojectured to underly jet quenching —
essential for characterisation of medium properties

» allows to characterise jet-induced modifications of
medium and to disentangle jets from background
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Why a Monte CarIO Parton ShOWGr? Jet Quenching

>

» exact energy-momentum conservation

» offers possibility to test different microscopic

Korinna Zapp

model medium-modified jets on basis of multi-particle
flnal states Introduction

accounts dynamically for interactions between jet and
medium

reproduces known (vacuum) evolution in absence of
medium

mechanisms

interface with experiments
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State Of the Art Jet Quenching

Analytic Calculations

>

» focus on interference effects

» well suited for single-inclusive observables, but
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Introduction

BDMPS, ASW, GLV, AMY, higher twist, collisional
(Bjorken, Thoma & Gyulassy, Braaten & Thoma,
Djordjevic, Zakharov, ...), ...

energy loss dominated by radiative energy loss (QCD
bremsstrahlung)

work in high energy limit
— no exact energy-momentum conservation

treatment of subleading particles difficult

not all of them have a natural transition to vacuum
physics when medium is switched off
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Monte Carlo Implementations

Introduction

» Q-PYTHIA (Armesto, Cunqueiro, Salgado, Xiang):
include BDMPS-like radiation in modified splitting
function

» YaJEM (Renk): medium increases virtuality of partons
during evolution

» PYQUEN (Lokhtin, Snigirev): PYTHIA afterburner,
reduces energy of final state partons and adds radiated
gluons according to BDMPS expectations

» PQM (Dainese, Loizides, Paic): Monte Carlo
implementation of BDMPS quenching weights

» HUING (Wang, Gyulassy): jet and minijet production
with induced splitting

= No implementation of a parton shower with microscopic
model for interactions with medium.
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Introduction

vacuum
Q2-evolution
R 3

N
\

JEWEL -

LY

inelastic scattering
o« without Q?-evolution
LPM-suppression

elastic scattering
without Q?-evolution

We work towards a dynamically consistent MC for jet
quenching that is consistent with all analytically known
limiting cases.
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Vacuum Evolution

vacuum
Q@%evolution

inelastic scattering
———e without Q?-evolution
LPM-suppression

elastic scattering
without Q?-evolution

Zapp, Ingelman, Rathsman, Stachel, Wiedemann, 0804:3568 [hep-ph]
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The ShOWGr In Vacuum Jet Quenching
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Heart of the parton shower simulation

no-splitting probability (Sudakov form factor) Vacuum Evolution
Tage =G
a
S.(Q?, Q?) = exp —/ Q’2 / dz = ZPaHbC z)
@ ~(Q2,E)

Procedure
» choose virtuality of initiating parton from %&2’02)
» choose kind of splitting a — b+ ¢
» choose energy sharing z from P,_.(2)

> repeat for daughters until no partons with Q> > Qg left

angular ordering required




The Hadronisation Model

The Problem
» jets in nuclear environment no well-defined colour
neutral system
» no well-defined colour topolgy
» other problems (later)

— need a sufficiently simple and flexible prescription
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The Problem
» jets in nuclear environment no well-defined colour Vacuum Evolution

neutral system
» no well-defined colour topolgy
» other problems (later)

— need a sufficiently simple and flexible prescription

The Solution

» idea: use Lund string fragmentation but replace
knowledge about colour flow by assumption that colour
neutralisation occurs locally ( Torbjérn Sjéstrand)

» can handle any jet-system if strings are allowed to end
at (artificial) endpoints at high rapidity

» works quite well even in eTe™ collisions




Comparlson to Data Thrust Monte Carlo for
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100 + T, ALEPH data + |
Tmaj, ALEPH data X
Tmin, ALEPH data % Vacuum Evolution

parton level, Qy = 1 GeV -----
hadron level, Qy = 1 GeV

dN/dT,

SE Al 157 =
= maj = maXﬁT-ﬁ:O = Tmin =
22 1pi] 2. |Bi > il

» not very sensitive to hadronisation

T = maxz,

A. Heister et al. [ALEPH Coll.] Eur. Phys. J. C 35 (2004) 457




Comparison to Data: dN/d¢

12 b ALEPH data +
parton level, @y = 1GeV -----
hadron level, Qy = 1 GeV

10 1 b

w 8T ]
2
= 6f & .
o
4t i
2r E
0 1 1 1 1 3 1
0 1 2 3 4 5 6 7

é = In(pmax/p)

» sensitive to details of hadronisation

A. Heister et al. [ALEPH Coll.] Eur. Phys. J. C 35 (2004) 457
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Zapp, Ingelman, Rathsman, Stachel, Wiedemann, 0804:3568 [hep-ph]
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» scattering cross section:

| tmax|
I - d t T ag(‘t| + IU/2D) 52 + U2 Elastic Energy Loss
Oelas = | ‘ 52 R (’t‘ T Mz )2 £)
0 D
or | |
tmax
(\tl) s*+
O-tlallas = / d| ‘ G ’t|2

I

> no-scattering probability: exp(—noejasT)
> possibility to let the recoil scatter (not explored here)

» medium: collection of scattering centres (here: constant
temperature, ideal quark-gluon gas EOS)
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collisional energy loss without Q?-evolution

5
cross section |, E = 10 GeV Elastic Energy Loss
***** cross section Il, E = 10 GeV E

— 4 cross section |, E = 100 GeV E

E cross section I, E = 100 GeV

NS

3 3t |

O,

3

I 2F e e

W

A

0
02 03 04 05 06 07 08 09 1
T [GeV]

» reproduces analytical calculations (with their
dependence on regularisation schemes)
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ReCO|| Jet Quenching

Korinna Zapp

angle between jet and recoiling scattering centre

1.6
T = 200 MeV, medium ——
14+ T = 200 MeV, recoil === E
T = 500 MeV, medium -----
r T = 500 MeV, recoil 1

Elastic Energy Loss

without splitting

dN/d cos(Ag) [a.u.]
o o o —
P = B O

0-2 : _______________ -
° I I I . L L L L L
-1 -08-06-04-02 0 02 04 06 08 1
cos(A¢)

» preferred angle nearly independent of temperature
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Inelastic Energy

vacuum
Loss

Q@%evolution

JEWEL

inelastic scattering
without @%-evolution
LPM-suppression

elastic scattering
without Q?-evolution

Zapp, Stachel, Wiedemann, 0812:3888 [hep-ph]
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BDMPS ASW opacity expansion:

d*I(N =1)
Ydwdk, dq,
%%ﬁ\%‘(m)\z(kl 'CIJ_)noTT2 [T—Ll —sin (T—Ll)} freleste Sneny
explicit field theoretic manifestation of the formation time
B 2w
Tk

interpolates between limiting cases
71 > L: totally coherent
71 < L: totally incoherent
MC procedure:
1. create gluon in inelastic process
2. check if scattering during t¢
no: gluon is formed, back to 1
yes: scattering after time At < t;, re-evaluate formation
time, back to 2




Radiative Energy Loss Baseline

BDMPS ASW results:

di 3

% xw 3 for
AE x L% for
AE x L for

for w < wc

w > We
L< L
L> L.
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N | BDMPS ASW results:
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Radiative Energy Loss Baseline
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for w < wc

for
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w > We
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Going Beyond BDMPS ASW

1. relaxing soft scattering approximation of BDMPS ASW
do 1 1
x oG —412) =
dg? = (qf +42)2 (a1 + 22

2. going beyond BDMPS soft gluon approximation

E w< E E w
E E—w
3. exploring realistic kinematics of inelastic process
kl <w
| RO

®

d2O'QQ—>ng _ UqQ—>qQ CF4O(S li

here: extreme limit 5 5
dwdkg T Wk

4. this includes recoil effects in elastic and inelastic
processes

Monte Carlo for
Jet Quenching

Korinna Zapp

Inelastic Energy
Loss
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Going Beyond BDMPS ASW et Guenching.

1 Korinna Zapp
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Going Beyond BDMPS ASW et Guenching.
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Going Beyond BDMPS ASW et Guenching.

1 Korinna Zapp
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Goin

dl/dw

AE [Gev]

1

0.01 N
+ recoil (= JEWEL-like)
0.001 + extreme inelastic process 1
- = = + energy conservation
0.0001 F —— 4 fyll elastic cross section 1
BDMPS ASW-like
0.00001 -+ -
0.1 0.1 1
w/E
200
)
S
,e‘bé \g'\&l
150 A
L P 1
S5
N
S
10r ]
50 + energy conservation 4
0 L L L L L
0 2 4 6 8 10

g Beyond BDMPS ASW

All improvements lead to
» loss of coherence

» enhanced energy loss
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Zapp, Ingelman, Rathsman, Stachel, Wiedemann, 0804:3568 [hep-ph]

Monte Carlo for
Jet Quenching

Korinna Zapp

Vacuum Evolution
+ Elastic
Scattering




Medium Modifications to the Shower

Spatio-temporal structure of shower

» lifetime of parton in shower (estimate from uncertainty
principle):
E E

@ @

T

Parton shower + elastic scattering

» assume that elastic scattering does not affect
Q2-evolution (no significant transverse phase space
opened)

— parton shower and elastic scattering decoupled
To compare with: simple model for induced radiation

» increase probability for perturbative splitting by factor
1 + fed inside the medium

Monte Carlo for
Jet Quenching
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Vacuum Evolution
+ Elastic
Scattering




Hadronisation Issues

A few observations

>

no well-defined colour flow due to interactions with
medium

» parton shower is accompanied by associated partons

» high level of soft background

» soft component of jet system has momenta of order of

thermal momenta

hadronisation of bulk medium not understood

Monte Carlo for
Jet Quenching
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Hadronisation Issues

and a few related questions

» Is the colour topology relevant for hadronisation?
» Are recoiling scattering centres part of the ‘jet'?
» What happens to the soft component?

» Is the hadronisation mechanism itself modified by the
presence of a dense medium? |s hadron formation inside
the medium possible and, if yes, how?

Monte Carlo for
Jet Quenching
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Vacuum Evolution
+ Elastic
Scattering
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and a few related questions
» Is the colour topology relevant for hadronisation?
» Are recoiling scattering centres part of the ‘jet'?

» What happens to the soft component?

Vacuum Evolution

» Is the hadronisation mechanism itself modified by the + Elastic

Scattering

presence of a dense medium? |s hadron formation inside
the medium possible and, if yes, how?

What to do?
pragmatic ansatz:

» assume hadronisation outside the medium

» recoiling scattering centres: can be hadronised together
with parton shower or don't show up in hadronic final
state

» identify observables that are insensitive to hadronisation
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100 GeV quark jet, only hadrons with E, > 2 GeV included

1000 1000
T vacuum  +

T vacuum
Tonaj Vacuum Tmaj Vacuum X

* X +

llisional
collisiona Tomin Vacuum Tomin vacuum %
100 T medium 3 T medium ——
E =2GeV Thngj medium -~~~ Ty medium -~

T medium -+ 7 edium -

dN/dT,

Vacuum Evolution
+ Elastic
Scattering

dN/dT,

; 3 i \
0 01 02 03 04 05 06 07 08 09 1 "0 01 02 03 04 05 06 07 08 09 1
T T,

T =500MeV, L =5fm

» might allow to distinguish between elastic and radiative
energy loss




Intra-Jet Distribution d/N/d¢ "l Guanching
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& = In(pmax/p)-distribution in a single 100 GeV quark jet

18 18
vacuum vacuum
16 [ coll. without recoil - 1 16 [ collisional without recoil -+ 1
14 F  parton level coll W"(" recoil -+ ] 1wl hadron level collisional with recoil -~~~ |
fned = 3 fred = 3
12 1k |
Y 10f Y10t ]
3 st z ]
. Vacuum Evolution
+ Elastic
0 1 Scattering
2+ |
0 —
6 7 8 4 5 6 7 8
¢ ¢

T =500MeV, L =5fm, freda =3
» clear increase of multiplicity due to radiative energy loss

» collisional energy loss only increases multiplicity when
recoils are counted towards jet
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The Brick-Problem

» standard problem created by TECHQM initiative to
compare different energy loss calculations
https://wiki.bnl.gov/TECHQM/index.php/Main_Page
> task:

» consider static medium with constant temperature and
length L

> let a quark with energy E, propagate in medium

» adjust medium properties to reach a given value of
(AE/Eq)

» calculate probability distribution P(AE/E,) for losing a
fraction € = AE/E, of projectile’s energy through
elastic scattering and/or medium induced gluon
radiation

Monte Carlo for
Jet Quenching
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Elastic + Inelastic

Scattering
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JEWEL-Answer to Brick Problem

100
10F
1k
Looaf
3
g 0.01F
0.001 F
0.0001 f
0.00001
-0.2

BDMPS ASW-like —

0.2

04 06 08 1
AEJE

1.2
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JEWEL-Answer to Brick Problem

100

10

1

P(AE/E)

0.001

0.0001

0.00001
-0.2

BDMPS ASW-like —

JEWEL total — ]
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JEWEL-Answer to Brick Problem et

100 Korinna Zapp
BDMPS ASW-like —
10 JEWEL total — ]
JEWEI radiative —
1k ]
o L=2fm
E 0.1F E
4 L ] Eq =10 GeV
g 0.01 q
AE
0.001 F . ] 2=)=0.1
(4E)
0.0001 ¢ . Elastic + Inelastic
’ Scattering
0.00001 L L L L L
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

AEJE

JEWEL radiative: energy carried by radiated gluons




JEWEL-Answer to Brick Problem

100
BDMPS ASW-like —
10 JEWEL total — ]
JEWEI radiative ——
1E R JEWEL recoil
— : L=2fm
E 0.1r E
2 oaf ] Eq =10 GeV
. 25y =01
0.001 ( . ) .
0.0001 ¢ ]
0.00001 L . 1 1 1
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

AEJE

JEWEL radiative: energy carried by radiated gluons

JEWEL recoil: energy carried away by recoil in elastic or
inelastic scattering
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JEWEL-Answer to Brick Problem

100
BDMPS ASW-like —
10 JEWEL total — ]
JEWEI radiative ——
1E R JEWEL recoil
— : L=2fm
E 0.1r E
E<]_’ 0.01F Eq =10 GeV
. 25y =01
0.001 ( . ) .
0.0001 ¢ ]
0.00001 L . . . 1
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

AEJE

JEWEL radiative: energy carried by radiated gluons
JEWEL recoil: energy carried away by recoil in elastic or
inelastic scattering

= characteristic differences between BDMPS
ASW and JEWEL scenario
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JEWEL-Answer to Brick Problem

100
BDMPS ASW-like —
10 JEWEL total — ]
| JEWEL radiative —
L. f\ JEWEL recoil 1
—~ . L=2fm
E 0.1F 3
2 onf 1 Eq=100GeV
25y =01
0.001 . ( . ) .
0.0001 ]
0.00001 L ! : L
0.2 0 02 04 06 038 1 12

AEJE

JEWEL radiative: energy carried by radiated gluons

JEWEL recoil: energy carried away by recoil in elastic or
inelastic scattering

= characteristic differences between BDMPS
ASW and JEWEL scenario
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Summary & Outlook

What we have achieved

>

>

vacuum parton shower seems to work reasonably well
elastic energy loss without Q?-evolution agrees with
analytic calculations

we have a way to include LPM-suppression in
probabilistic MCs

» radiative energy loss has BDMPS ASW limiting case

» we can relax assumptions in analytic calculation

» one way of combining parton shower and elastic

scattering is implemented and explored
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Summary & Outlook

(Some) open questions

>

embedding of parton shower in medium involves
model-dependent assumptions

spatiotemporal structure based on assumptions that are
difficult to constrain

pertubative treatment of interactions of jet with
medium problematic

» description of inelastic scattering still incomplete

» hadronisation in nuclear environment poorly understood
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Summary & Outlook

(Some) open questions

» embedding of parton shower in medium involves
model-dependent assumptions

» spatiotemporal structure based on assumptions that are
difficult to constrain

» pertubative treatment of interactions of jet with
medium problematic

» description of inelastic scattering still incomplete

» hadronisation in nuclear environment poorly understood
More interesting questions that we hope to contribute to

» energy loss of heavy quarks

» separation of weakly coupled from strongly coupled
regimes

» hadronisation
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