Flavour Physics

Starting a new era at LHC Learned a few lessons from Tevatron ?

> Ulrich Kerzel University of Cambridge

> > 1

Overview

- The name of the game
- The players at CERN
- The other team at FNAL
 - \oslash B_s mixing at CDF precision measurements at a hadron machine
 - Early physics
- Think Trigger !
- Will not cover B-factories
 - Sectoremely successful
 - Many significant contributions to Flavour Physics
 - Cannot access B_s system from Y(4S) resonance
 (but remember Belle `engineering run')

Flavour Physics

Flavour Physics

Ourrent averages / summary from the UTFit collaboration

 $\rho = 0.1454 \pm 0.022$ $\eta = 0.342 \pm 0.014$ $\alpha = 92.0 \pm 3.2^{\circ}$ $\beta = 22.0 \pm 0.8^{\circ}$ $\gamma = 65.6 \pm 3.3^{\circ}$

(many more ... worth a summary talk on its own...)

The Road ahead...

All measurements fit into the Standard Model / CKM picture

- Over-constrained tests OK to theoretical uncertainties
- CKM phase consistent with source of CP violation
 - need further sources to explain cosmic abundance of matter

Searching for New Physics

- Direct searches: Expect NP at TeV scale
- Indirect searches
 - Complement direct searches
 - Measure properties, flavour structure of NP
 - @ E.g.

Senhancing rare decay branching ratios

Precision measurements – theoretical expectations

LHC at CERN

Overall view of the LHC experiments.

LHCb

LIG

Detector optimised towards Flavour Physics
both b quarks produced in forward direction
Only look in a cone – no measurements with missing energy
High-precision vertex detector (inside beam-pipe) and RICH detectors for particle ID

CMS / ATLAS

<u> CMS:</u>

- Flavour physics not in centre of physics effort
 - ⇒ b tagging mainly part of Higgs
- B_s → J/ψ φ
 (resolution: 51 MeV for J/ψ,
 65 MeV for B)
- σ(J/ψ → µµ) for "first physics"

ATLAS:

- Much more extensive flavour programme
 - B mass resolution ~40MeV
- O Centered on b → J/ψ X
 - Solution Sin(2β), ΔΓ/Γ (including B_s → D_sπ, D_sa₁)
 - ${\it { o} }$ cross sections, e.g. $B^{\pm} \rightarrow J/\psi \; K^{\pm}$

 - Spin properties, e.g. Λ_b → J/ψΛ
 - Quarkonia, e.g. χ_b → J/ψ J/ψ

4 5 6 7 8 9

LHCb physics

Dedicated B physics experiment

Covering all aspects of Charm and Bottom physics
 Cross-section, rare decays, lifetimes, spectroscopy, ...
 Higher cross-section than FNAL, better detector, trigger
 more B (D) per fb⁻¹

Channel	1 fb ⁻¹ at LHCb = fb ⁻¹ at Tevatron	
$D^0 \rightarrow K\pi$	20	50M / 2fb ⁻¹ at LHCb 0.5M / 0.35fb ⁻¹ at CDF
B→ hh	30	200k / 2fb ⁻¹ at LHCb 6.5k / 1fb ⁻¹ at CDF
$B^+ \rightarrow J/\psi K^+$	60	1.7M / 2fb ⁻¹ at LHCb 3.4k / 0.25fb ⁻¹ at CDF
$B_s \rightarrow D_s \pi$	10	120k / 2fb ⁻¹ at LHCb 5.6k / 1fb ⁻¹ at CDF

B⁰

U

$$A_{FB}$$
 in $B^{O} \rightarrow K^{*} \mu \mu$

 Suppressed loop decay
 A_{FB}(s) in μμ rest-frame probe of NP
 Shape of distribution
 Zero crossing
 Determine ratio of Wilson coefficients C₇/C₉ with 13% stat. uncertainty

LHCb - Key Analyses

nep-ex/0604112v3

Bs mixing phase ϕ_s very small in SM \Rightarrow potentially large contributions from NP Analyses: $B_s \rightarrow J/\psi\phi$, $J/\psi\eta$, $D_sD_s \parallel c\tau(B) \rightarrow \Delta\Gamma$...

CKM angle Y

Tree Level:

 $B_s \rightarrow D_s K$

 $B_d \rightarrow D^{(*)}\pi$

$$B^{\pm}$$
, $B_d \rightarrow D^{(*)}K^{(*)}$, with D^0 decaying to:

2 bodies: пК, КК, пп

- 3 bodies: KS ππ, KS KK, KS Kπ
- 4 bodies: Кппп, ККпп

Penguin Level: $B_s \rightarrow KK, B_d \rightarrow \pi\pi$ \implies PID paramount U spin approach

LHCb - Key Analyses

140 120 -100 -80 -60 -

Bs mixing phase ϕ_s very small in SM → potentially large contributions from NP Analyses: $B_s \rightarrow J/\psi\phi$, $J/\psi\eta$, $D_sD_s \parallel c\tau(B) \rightarrow \Delta\Gamma$...

CKM and

Tree Level: $B_s \rightarrow D_s K$ $B_d \rightarrow D^{(*)}\pi$ B^{\pm} , $B_d \rightarrow D^{(*)}K^{(*)}$, with D^0 decaying to: 2 bodies: πK, KK, ππ

Wake-up call from NP ?

PID paramount U spin approach

ear LHCb

0.5

0.6

3 bodies: KS ππ, KS KK, KS Kπ

4 bodies: Кппп, ККпп

5+ years later ?

Typical Events at FNAL

Typical Events at LHC

ATLAS: Higgs LHCb: B_s Much busier events (again) Pile-up, multiple events, Again requires (steep) learning curve: → LEP → FNAL → LHC

LHCb: $B_s \rightarrow J/\psi \phi$

16

Precision measurements Tevatron can perform precision flavour measurements !

Bs mixing at FNAL

One of the key analyses at FNAL
Many FTE and PhD theses to make this measurement possible
Experimentally very challenging

B_s oscillations much faster than B_d → large statistics → high resolution

Bs mixing at FNAL

B_s mixing at FNAL

Tagger:

Same Side Tagger (SST) $Q_{jet} = \frac{\sum_{i} w_i Q_i}{\sum_{i} w_i}$

- Jet Charge
- Soft lepton ID
 - Flavour from semi-lep. B decay
 - Diluted by oscillation and cascade
- Calibrated on data

Opposite Side Tagger (OST) K[±] leading fragmentation partner Very powerful tagger \oslash Checked using $B_s \rightarrow D_s \pi$ data Calibration / Performance via MC many FTE data/MC agreement extensive checks to verify MC

Bs mixing at FNAL

- "Pushing" on all fronts...
- Ø Neural Networks:
 - Identify tracks from B decays
 - Identify B jets
 - Identify leptons from B
 - Jet Charge Tagger
 - B candidate selection

- → significant improvements w.r.t. "conventional" approaches
 - Requires detailed understanding of simulation, including correlations
 - Rigorous tuning ...
 - and still not good enough for all tasks
 - signal events modeled reasonably well
 - have to take background from data
 - Many iterations until cut-based, etc. analyses could be replaced
- \Rightarrow Has to be done all over again at LHC !

Data vs MC: CDF Example

Check not only each variable – but also all correlations!

Early Physics

Understanding the Detector

Trigger

- Hadronic environment very challenging for Flavour Physics.
- Interesting signal "buried" under large hadronic background.
- Triggers are essential
- Much more challenging than
 B-factories "event shape"
 LEP(1): Z⁰ event

Trigger

Di-Muon Mass

Trigger approaches:

- First level:
 - <u>Di-muon</u> (J/ψ) : "easy" trigger, clean signal
 - Single lepton : Semi-leptonic B decays
 Combine with displaced track (CDF)
 - Hadronic B : ~80% of B decays
 - Require several displaced tracks at trigger level
 - Needs precision tracking at trigger level
 - Biases lifetimes, etc.
 - Challenging for first physics...
 - PID based at LHCb ?
- High Level Trigger (HLT)
 - Fully reconstructed decays
- Need to adapt to changing luminosity maximise recorded data
 - Set of fixed pre-scales
 - Oynamic pre-scaling
 - "Uber-prescaling"
 - Need to keep track of recorded luminosity

Di-Muon Mass(GeV)

LHC Start-UP Friday 5th September 2008

No access to UX85-B

from Friday 5th 12:00 h LHCb cavern closed from the midday ay 5th September until further notice due LHC startup

A

BACKUP

Further material

