Search for New Physics at the LHC Focus: First Physics Run 2009/2010

UK HEP Forum: "Tevatron2LHC" 7/8 May 2009

Imperial College London

Timeline of LHC Discoveries?

Many people now ask:

Will the LHC discover the Higgs boson?

A (provocative) answer could be ...

Timeline of LHC Discoveries?

Many people now ask:

Will the LHC discover the Higgs boson?

A (provocative) answer could be ...

By the time the LHC discovers the Higgs boson, that discovery will no longer be considered interesting.

M.E. Peskin - Tools 2008

SM + X: New Physics Potential of the LHC

UK HEP FORUM "Tevatron2LHC" May 2009

Imperial College London

4

First LHC Physics Run: Expectations

ADD: Monojet

Few Examples of important BSM searches in 2009/2010 (Benchmark 10 TeV 100/pb)

Significant discovery potential in 2009/2010.

Will explore new territory with several BSM searches!

(Plots all CMS but ATLAS similar!)

Heavy Resonances

Example: $Z' \rightarrow ee$

integrated luminosity (fb⁻¹)

10⁴

10³

10²

10 🚽

101

10²

10⁻³

100/pb

5 sigma discovery reach

6TeV

Z' mass (TeV/c²)

2.5

M>1 TeV

New Territory

M₇, ~ 1.5 TeV

1400

ML [GeV/c²]

Long lived Particles **Example: Stopped Gluinos**

BSM Searches

Model	Mass reach	Luminosity (fb ⁻¹)	Early Systematic Challenges
Contact Interaction	Λ < 3 TeV	0.01	Jet Eff., Energy Scale
Z'	M ~ 1 TeV	0.01-0.1	Alignment
W'	M ~ 1 TeV	0.01	Alignment/MET
Black Holes	M _D ~ 2.0 TeV	0.01	MET/ Jet Energy Scale
Excited Quark	M ~0.7 – 3.6 TeV	0.1	Jet Energy Scale
Axigluon or Colouron	M ~0.7 – 3.5 TeV	0.1	Jet Energy Scale
E6 diquarks	M ~0.7 – 4.0 TeV	0.1	Jet Energy Scale
Technirho	M ~0.7 – 2.4 TeV	0.1	Jet Energy Scale
ADD Virtual G _{KK}	M _D ~ 4.3 - 3 TeV, n = 3-6	0.1	Alignment
	M _D ~ 5 - 4 TeV, n = 3-6	1	
ADD Direct G _{KK}	M _p ~ 1.5-1.0 TeV, n = 3-6	0.1	MET, Jet/photon Scale
SUSY	M ~1.5 – 1.8 TeV	1	MET, Jet Energy Scale, Multi-
Jet+MET+0 lepton	M ~0.5 TeV	0.01	Jet backgrounds, Standard
Jet+MET+1 lepton	M ~0.5 TeV	0.1	Model backg.
mUED	M ~0.3 TeV	0.01	Lepton ID
	M ~ 0.6 TeV	1	
HSCP	M ~ 0.3 TeV	0.1	TOF, dE/Dx
	M ~ 1.0 TeV	1	
RS1			
di-jets	M _{G1} ~0.7- 0.8 TeV, c=0.1	0.1	Jet Energy Scale
di-muons	M _{G1} ~0.8- 2.3 TeV, c=0.01-0.1	1	Alignment

UK HEP FORUM "Tevatron2LHC" May 2009 Unders

Understood data _____

∕∖∖

Imperial College London Not an exhaustive list!!

14 TeV plots and numbers

6

BSM Searches

Model	Mass reach	Luminosity (fb ⁻¹)	Early Systematic Challenges
Contact Interaction	Λ < 3 TeV	0.01	Jet Eff., Energy Scale
Ζ'	M ~ 1 TeV	0.01-0.1	Alignment
W ^p	M ~ 1 TeV	0.01	Alignmont/MET
Black Holes	M _D ~ 2.0 TeV	0.01	MET/ Jet Energy Scale
Excited Quark	M ~0.7 – 3.6 TeV	0.1	Jet Energy Scale
Axigluon or Colouron	M ~0.7 – 3.5 TeV	0.1	Jet Energy Scale
E6 diquarks	M ~0.7 – 4.0 TeV	0.1	Jet Energy Scale
Technirho	M ~0.7 – 2.4 TeV	0.1	Jet Energy Scale
ADD Virtual G _{KK}	M _D ~ 4.3 - 3 TeV, n = 3-6	0.1	Alignment
	M _D ~ 5 - 4 TeV, n = 3-6	1	
ADD Direct G _{KK}	M _D ~ 1.5-1.0 TeV, n = 3-6	0.1	MET, Jet/photon Scale
SUSY	M ~1.5 1.8 ToV	1	MET, Jet Energy Scale, Multi
Jet+MET+0 lepton	M ~0.5 TeV	0.01	Jet backgrounds, Standard
Jot+MET+1 lepton	M ~0.5 ToV	0.1	Model backg.
mUED	M ~0.3 TeV	0.01	Lepton ID
		1	

Rather than presenting the generic reach plots for each scenario (we have seen them so many times already), I will discuss a few illustrative examples in more detail.

14 TeV plots and numbers

Not an exhaustive list!!

New Physics Search with Di-jets

Imperial College London

New Physics Search with Di-jets

Imperial College London

Di-lepton Resonances

Because of their clear signature di-lepton resonances have always been the subject of new physics searches. At the LHC they are predicted to arise in many BSM models:

Clear signatures: $\mu^+\mu^-$ and e^+e^- final state

Di-lepton Resonances (Example Z')

SUSY Searches @ LHC

Huge number of theoretical models

- Very complex analysis; MSSM >100 parameter
- To reduce complexity we have to choose some "reasonable", "typical" models; use a theory of dynamical SUSY breaking
 - mSUGRA (main model)
 - GMSB (studied in less detail)
 - AMSB (studied in less detail)
- Use models to study different SUSY signatures in the detector.

Clear signatures of large missing energy, hard jets and many leptons! (assume R-Parity)

Could be very spectacular!

SUSY Discovery Potential - CMSSM

Discover Potential for "muli-jet, multi-lepton and missing energy search" is described in the CMSSM. Both ATLAS and CMS have very similar performance (as expected).

First LHC Running 2009/2010 - Expectations

Expectations are high!

With as little as ~50/pb @ 10 TeV of (understood!) data we should be able to go significantly beyond the reach of the Tevatron!

All-hadronic Reach project to 10 TeV

What do we call a "SUSY search"?

The definition is purely derived from the experimental signature. Therefore, a "SUSY search signature" is characterized by Lots of missing energy, many jets, and possibly leptons in the final state

<u>Missing Energy:</u>

• from LSP

<u>Multi-Jet:</u>

• from cascade decay (gaugino)

Multi-Leptons:

from decay of charginos/neutralios

RP-Conserving SUSY is a very prominent example predicting this famous signature but ...

What is its experimental signature?

... by no means is it the only New Physics model predicting this experimental pattern. Many other NP models predict this genuine signature

Missing Energy:

• Nwimp - end of the cascade

<u>Multi-Jet:</u>

• from decay of the Ns (possibly via heavy SM particles like top, W/Z)

Multi-Leptons:

from decay of the N's

Model examples are Extra dimensions, Little Higgs, Technicolour, etc but a more generic definition for this signature is as follows.

"SUSY Searches" - What are we searching for?

- Pair-produced new particles N with a colour charge and a mass of O(TeV/2)
- N decays via a cascade into other new particles as well as SM particles like bosons, leptons and quarks
- At the end of the cascade decay is a weakly interacting new particle i.e. a dark matter candidate

In other words, a "SUSY search" is a search for a weakly interacting (stable) particle that was produced in the cascade decay of a heavy new particle.

Use "SUSY" as a convenient tool to characterize this search!

Jets + E_T^{miss} - Inclusive Search

Big discovery potential

But requires a very good detector understanding and background control: Analysis Strategy:

- Be brave
- Fight background and noise
- Use data control samples
- Estimate background from data

Imperial College London

SUSY search with dijet events

Irreducible Background Z to invisible + Jets

Method:

- select clean sample of kinematic similar control background
- define "pseudo ET^{miss}" in control sample
- correct for differences

Z->II + jets: di-lepton p_T ≡ "pseudo E_T^{miss}";

photon + jets: photon p_T ≡ "pseudo E_T^{miss}";

Imperial College London

First Kinematic Measurements

Making sense out of what we will see

- What observables can be used to constrain the model?
 - Low energy (precision) data
 - Flavour physics (many constraints from B physics)
 - Other low energy observables, e.g. g-2
 - High energy (precision) data
 - Precision electroweak observables, e.g. M_W, m_{top}, asymmetries
 - Cosmology and Astroparticle data
 - e.g. relic density
- How to exploit this information?
 - State of the art theoretical predictions (tools)
 - Development of a framework for combination of these tools
- Collaboration between experiment and theory

Buchmüller, Oliver (CERN) – Exp.	Cavanaugh, Richard (Uni. of Florida) – Exp.
De Roeck, Albert (CERN & Uni. Antwerpen) – Exp.	Ellis, John (CERN) – Theo.
Flächer, Henning (CERN) – Exp.	Heinemeyer, Sven (Santander) – Theo.
Isidori , Gino (INFN Frascati) – Theo.	Olive, Keith (Uni. of Minnesota) – Theo.
Paradisi , Paride (Tech. Uni. München) – Theo.	Ronga, Frédéric (CERN) – Exp.
Weiglein, Georg (Durham) – Theo.	

See O. B et al., PLB 657/1-3 pp.87-94

Making sense out of what we will see

- What observables can be used to constrain the model?
 - Low energy (precision) data
 - Flavour physics (many constraints from B physics)
 - Other low energy observables, e.g. g-2
 - High energy (precision) data
 - Precision electroweak observables, e.g. M_W, m_{top}, asymmetries
 - Cosmology and Astroparticle data
 - e.g. relic density
- How to exploit this information?
 - State of the art theoretical predictions (tools)
 - Development of a framework for combination of these tools
- There are several similar other efforts; Latest Examples: arXiv:0904.2548:
 S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz, M. Hobson arXiv:0903.2487:
 F. Feroz, M.P. Hobson, L. Roszkowski, R.Ruiz de Austri, R. Trotta

See O. B et al., PLB 657/1-3 pp.87-94

LHC Weather Forecast - CMSSM

JHEP 0809:117,2008

O.B, R.Cavanaugh, A.De Roeck,J.R.Ellis, H.Flaecher, S.Heinemeyer,G.Isidori, K.A.Olive, P.Paradisi, F.J.Ronga, G.Weiglein

Simultaneous fit of CMSSM parameters $m_0, m_{1/2}, A_0, \tan\beta$ (μ >0) to more than 30 collider and cosmology data (e.g. M_W, M_{top}, g-2, BR(B \rightarrow X γ), relic density)

"LHC Weather Forecast"

"CMSSM fit clearly favors low-mass SUSY -Evidence that a signal might show up very early?!"

2010? - Example CMSSM

JHEP 0809:117,2008

O.B, R.Cavanaugh, A.De Roeck, J.R.Ellis, H.Flaecher, S.Heinemeyer, G.Isidori, K.A.Olive, P.Paradisi, F.J.Ronga, G.Weiglein

Simultaneous fit of CMSSM parameters $m_0, m_{1/2}, A_0, \tan\beta$ (μ >0) to more than 30 collider and cosmology data (e.g. M_W, M_{top}, g -2, BR(B \rightarrow X γ), relic density)

"LHC Weather Forecast"

2010? - Example CMSSM

JHEP 0809:117,2008

O.B, R.Cavanaugh, A.De Roeck, J.R.Ellis, H.Flaecher, S.Heinemeyer, G.Isidori, K.A.Olive, P.Paradisi, F.J.Ronga, G.Weiglein

Simultaneous fit of CMSSM parameters $m_0, m_{1/2}, A_0, \tan\beta$ (μ >0) to more than 30 collider and cosmology data (e.g. M_W, M_{top}, g-2, BR(B \rightarrow X γ), relic density)

Including a "edge discovery" in the CMSSM fit constraints significantly the parameter space ...

Connection to Direct WIMP Searches

Direct detection of WIMP (LSP) Dark Matter

- DAMA 2000 58k kg-days Nal Ann. Mod. 3sigma w/DAMA 1996 WARP 2.3L, 96.5 kg-days 40 keV threshold ZEPLIN II (Jan 2007) result CDMS (Soudan) 2004 + 2005 Ge (7 keV threshold) XENON10 2007 (Net 136 kg-d)
- WARP 140kg (proj)
- LUX 300 kg LXe Projection (Jul 2007)
- DEAP CLEAN 1000kg FV (proj)
- XENON1T (1 tonne) projected sensitivity

 $\begin{array}{l} \mbox{Sensitivity Plot:} \\ \mbox{WIMP(LSP) Mass vs. } \sigma_{\rm p}{}^{\rm Sl} \end{array}$

- $\sigma_{\rm p}^{\rm SI:} \mbox{ spin-independent dark matter } \\ WIMP \mbox{ elastic scattering cross section on a free proton.}$
- A convenient way to illustrate direct and indirect WIMP searches

Connection to Direct WIMP Searches

Connection to Direct WIMP Searches

Sensitivity will further increase once auxiliary measurement are made, e.g. lepton edges, m_{Higgs}, etc.

Interesting possibility to connect collider results (in particular discoveries) with direct dark matter searches. Theoretical limitations in e.g. the calculation of σ_p^{SI} still need to be addressed though.

UK HEP FORUM "Tevatron2LHC" May 2009

Summary

- 2010 will be the year of machine, detector, and physics analysis commissioning but with ~100/pb @ 10 TeV there are also very interesting BSM discovery possibilities!
 - Challenge: commissioning of machine and detectors of unprecedented complexity, technology, and performance
 - Re-discover the Standard Model at 10 TeV, understand the "LHC environment"
 - Significant discovery sensitivity for several BSM scenarios like Z',W, etc' but also SUSY.
- The LHC will discover low energy SUSY (if it exists).
 - Already 2010 could become the year of "SUSY" but it could also take more time and ingenuity before we can claim a discovery
 - First signals might emerge already in the first data but do we understand them?!
- Eventually the LHC will cover a new physics scale of 1-3 TeV.
 - Many new physics models; Black hole, Extra Dimensions, Little Higgs, Split Susy, New Bosons, Technicolour, etc ...
- 'Making sense' of what we will see should be an integral part of the program of work
 - Develop methodology and tools able to consitently interepret the results, in particular discoveries, in the context of Particle (Astro)Physics and Cosmology.

More on Global Fits

UK HEP FORUM "Tevatron2LHC" May 2009

Used Constraints

Low energy observables			Electroweak observables	
$R(b o s \gamma)$	Isidori & Paradis	si micrOMEGAs	$\Delta \alpha^{(5)}_{had}(m_Z^2)$	SUSY-Pope
R(B o au u)	Isidori & Paradis	si	mz	SUSY-Pope
$BR(K \leq \tau \nu)$	Isidori & Paradis	si	Γ _Z	SUSY-Pope
$R(B - \mathcal{I}, \mathcal{U})$	Isidori & Paradis	si	$\sigma_{\sf had}^{\sf 0}$	SUSY-Pope
$R(K o \pi u ar{ u})$	Isidori & Paradis	si	R_{I}	SUSY-Pope
$BR(B_s o \ell \ell)$	Isidori & Paradis	si micrOMEGAs	$A_{ m fb}(\ell)$	SUSY-Pope
$BR(B_d o \ell \ell)$	Isidori & Paradis	si	${\cal A}_\ell(P_ au)$	SUSY-Pope
$R(\Delta m_s)$	Isidori & Paradis	si	$R_{ m b}$	SUSY-Pope
$R(\Delta m_s)/R(\Delta m_d)$	Isidori & Paradis	si	R _c	SUSY-Pope
$R(\Delta m_{\mathcal{K}})$	Isidori & Paradis	si	$A_{\rm fb}({\sf b})$	SUSY-Pope
$R(\Delta_0(K^*\gamma))$	SuperIso		$A_{\rm fb}(c)$	SUSY-Pope
$\Delta(g-2)$	FeynHiggs		$A_{ m b}$	SUSY-Pope
Higgs sector observables			Ac	SUSY-Pope
m ^{light} E			$A_{\ell}(SLD)$	SUSY-Pope
m _h re	symmeds		$\sin^2 \theta_{\rm w}^{\ell}(Q_{\rm fb})$	SUSY-Pope
Cosmology observables			mw	SUSY-Pope
Ωh^2 mi	icrOMEGAs	DarkSUSY	mt	SUSY-Pope
σ_p^{SI} Da	arkSUSY			-

LHC Weather Forecast - NUHM1

JHEP 0809:117,2008

O.B., R.Cavanaugh, A.De Roeck,J.R.Ellis, H. Flaecher S.Heinemeyer,G.Isidori, K.A.Olive, P.Paradisi, F.J.Ronga, G.Weiglein

Non Universal Higgs Model1: - one extra free parameter scalar contributions to Higgs masses at GUT scale allowed to differ from those to squark and slepton masses

Simultaneous fit of NUHM1 parameters m_0 , $m_{1/2}$, A_0 , $\tan\beta$, m_H^2 and μ to more than 30 collider and cosmology data (e.g. M_W , M_{top} , g-2, BR(B \rightarrow X γ), relic density)

"LHC Weather Forecast"

NUHM1 fit also favours low-mass SUSY

Global χ^2 Fit

- Constraining the parameter space of the CMSSM
 - multi-parameter χ^2 "fit"

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}} + \sum_{j}^{M} \frac{(f_{\mathsf{SM}_{j}}^{\mathsf{obs}} - f_{\mathsf{SM}_{j}}^{\mathsf{fit}})^{2}}{\sigma(f_{\mathsf{SM}_{j}})^{2}}$$

- C_i : experimental constraint
- P_i : predicted value for a given CMSSM parameter set
- fitting for all CMSSM (aka mSUGRA) parameters:
 - *M*₀ common scalar mass (at GUT scale)
 - *M*_{1/2} common gaugino mass (at GUT scale)
 - A₀ tri-linear mass parameter (at GUT scale)
 - **tan** β ratio of Higgs vacuum expectation values
 - sign(μ) sign of Higgs mixing parameter (fixed)
- including relevant SM uncertainties $(m_{top}, m_Z, \Delta \alpha_{had}^{(5)})$
- Sampling of parameter space with Markov-Chain Monte Carlo type technique

More BSM Reach Studies

UK HEP FORUM "Tevatron2LHC" May 2009

SUSY: GMSB

Experimental Signature:

•lepton and jets

SUSY breaking mediated via gauge interactions:

SUSY: GMSB

Separate pointing from non-pointing photons by looking at the ECAL cluster shape **Discovery** potential -C -2.1 already with 1/fb 2.55 -2.15 . . - **·** 2.5 -2.2 10 luminosity for 5σ discovery (fb⁻¹) <u>ф</u> – – 2.45 -2.25 9 non-pointing photons -0.75 8 pointing photons -23 0.35 -0.65 0.2 0.25 0.3 -0.7 -0.6 η η 7 both channels r ATLAS M shower EM shower 6 y 60 GeV y 60 GeV Middle 5 Front 4 З õ 2 <mark>л</mark> Х 1 0 25 50 0 100 200 400 CT (CM) Neutralino lifetime

UK HEP FORUM "Tevatron2LHC" May 2009

Imperial College London

Heavy Stable Charged Particles

Heavy Stable Charged Particles

Heavy Stable Charged Particles (HSCP)

similar Analysis done by ATLAS

δt

X X

CMS PAS EXO-08-003

HSCP predicted by many models SUSY (GMSB, split SUSY..) + non-SUSY (UED..) - could see sleptons or R-hadrons (metastable stops and gluinos build R-Hadrons)

Challenging channel:

- trigger: slow particles might arrive late in muon system
- \Rightarrow wrong bunch crossing associated
- muon reconstruction: R-Hadrons could change charge

 $β_{DT}$ from drift tubes: looks like muon with wrong timing; δt gives β dE/dx from silicon tracker \Rightarrow $β_{TK}$ (Bethe-Bloch equation) Requiring $β_{DT} < 0.8 \& \beta_{TK} < 0.8$

stents 10 **β**τκ CMS Preliminary **CMS Preliminary** CMS Preliminary ŝ L_{int} (pb⁻¹) to observe 3 1 0.00 Signal 1.7 Background 10³ 1.6 1.5 10² 1.4 Gluino 101 Stop 1.3 10 10 GMSB stau 1.2 KK tau perial College Mass (Coll) 1.8 2 1.2 1.4 1.6 1.8 2 2.2 β_{DT}⁻¹ l ondor

Long Lived Particles: Stopped Gluinos

Interesting discovery potential for stopped gluinos

- Long lived gluinos are predicted in a number of models e.g. split SUSY
- Strongly produced they hadronize and eventually stop in the dense detector material.
- Decay in energy splash micoseconds or even days later
- Needs special beam-gap trigger to capture the decay
- Crucial cosmic background already measured during dedicated CMS cosmic runs (CRAFT)
- Already sensitive to gluino masses of ~300 GeV after only days of data taking

di-object signature search

-di-photons: Important cross-check to rule out spin-1 hypothesis (i.e. **RS graviton** instead of a Z')

- lepton+ E_T^{miss} : signature of new heavy W-like bosons (LR model)
- jet+ E_T^{miss}: signature: 1 high p_T central jet + E_T^{miss} ~back to back <u>mono-jet final states proposed by extra dimension models ADD</u> UK HEP FORUM "Tevatron2LHC" May 2009 Imperial College London

Di-lepton resonance (Z')

UK HEP FORUM "Tevatron2LHC" May 2009

Visible Mass GeV

1000 1200

400

200

600

800

More exotic searches ...

3-object searches:

2 leptons + jets: W_R, lepto-quarks (LQ) studied decay modes: LQ $\rightarrow e \mid \mu q$ W_R $\rightarrow e \mid \mu N$

N: heavy majorana neutrino

something even more spectacular:

Vector boson resonances (high luminosity search): signature: - 2 high rapidity high pT "tag" jets

- 2 highly boosted bosons in the center
- no jets between the two "tag" jets

b'b'->WWWbb: a fourth generation quark **signature:** lots of leptons(1-4) +2 b-jets

Black holes: decay via Hawking radiation signature: large number of decay products ⇒ large transverse momentum sum

or stay unspecific: MUSIC model unspecific search in CMS

UK HEP FORUM "Tevatron2LHC" May 2009

More on data-driven Bkg. extraction

UK HEP FORUM "Tevatron2LHC" May 2009

An illustrative example: $Z \rightarrow vv+jets$ Irreducible background for Jets+ E_t^{mis} search

Data-driven strategy:

• define control samples and understand their strength and weaknesses:

An illustrative example: $Z \rightarrow vv+jets$ Irreducible background for Jets+ E_t^{mis} search

Data-driven strategy:

• define control samples and understand their strength and weaknesses:

Z*→µµ*+jets

Strength:

- very clean, easy to select
 Weakness:
- low statistic: factor 6 suppressed w.r.t. to Z →vv

An illustrative example: $Z \rightarrow vv+jets$ Irreducible background for Jets+ E_t^{mis} search

Data-driven strategy:

• define control samples and understand their strength and weaknesses:

Z→μμ+jets

Strength:

- very clean, easy to select
 Weakness:
- low statistic: factor 6 suppressed w.r.t. to Z →vv

Strength:

- larger statistic
 Weakness:
- not so clean, SM and signal contamination

E, mis

An illustrative example: $Z \rightarrow vv+jets$ Irreducible background for Jets+ E_t^{mis} search

Data driven strategy:

• define control samples and understand their strength and weaknesses:

Z→ll+jets

Strength:

- very clean, easy to select
 Weakness:
- low statistic: factor 6 suppressed wrt. to Z →vv

W→lv+jets

Strength:

- larger statistic
 Weakness:
- not so clean, SM and signal contamination

Strength:

- large stat, clean for high E_γ
 Weakness:
- not clean for E_{γ} <100 GeV, possible theo. issues for normalization (u. investigation)

γ+*jets: Estimate Z to invisible*

50

Imperial College London

More on (CMS) Reach @ 10 TeV

UK HEP FORUM "Tevatron2LHC" May 2009

Z' to mumu

- 14 TeV curves: from PAS SBM-07-002
 - Rescale 14 TeV curves by corresponding cross section ratios for Signal and Drell-Yan bkg \rightarrow 10 TeV curves
 - Z_v and Z_{SSM} : the two extremes in "reach":

Z' to ee

W' to ev

W' to ev

Feb 11, 2009

5**5**5

Exotica: excited quark

Integrated Lumi (pb ⁻¹)	Mass reach (TeV) LHC @ 10 TeV	Mass reach (TeV) LHC @ 14 TeV
10	1.80	2.20
100	2.50	3.25
1000	3.30	4.25

Imperial College London

Extra dimensions

First LHC Running 2009/2010 - Expectations

Expectations are high!

With as little as ~50/pb @ 10 TeV of (understood!) data we should be able to go significantly beyond the reach of the Tevatron!

Timeline: First SUSY Analyses

Use Run 1A of the Tevatron to illustrate a possible(!) Luminosity profile for the first LHC physics run 35000 2500 Status and future of the Tevatron. V. Bharadwaj (Fermilab) . 1995. Integrated Luminosity 1/nb 30000 200 days: 2000 "Duration of proposed Weekly Lum 1/nb LHC running in 2009/2010" 25000 Run 1A 1500 20000 ,000⁰⁰⁾ Run 1B 15000 1000 10000 500 5000 0 29 33 37 45 25 41 49 5 13 17 21 9 Week #

Luminosity profile of Run 1A - first 200 days:

At "half-time" only ~20% of the total integral Luminosity was recorded. The remaining 80% were taken in the second half of run period.