In Search of Discovery: Results from the Tevatron

Chris Hays, Oxford University

UK HEP Forum, Coseners House, Abingdon.

Fundamental Particle Discoveries

- 15 years since last collider particle discovery

8 May, 2009

p+NUCLEUS -+ µµ+ANYTHING μ⁺μ^{*} ο μ+ μ+ + μ⁻ μ⁻ (cm²/GeV/nucleon) <u>d^z σ</u> dmdy|y=0 ^{(c} 0⁴ -38 10 -39 10 6 10 m(GeV) b.) d²σ | y≡o(IO³⁷cm²/Ge\/nucleon) m(GeV)

1977 observation of $\Upsilon \rightarrow \mu \mu$ in proton-nucleus collisions demonstrated the existence of a third generation of quarks

> 30 years since last surprise

accelerator particle discovery

Chris Hays, Oxford University

Making a Discovery

- Strategies
 - Probe well-motivated models
 - Search for clear indications of new physics
 - Study all final states

Issues

- How do you know when it's a discovery?
- How do you know you haven't missed a discovery?

Tevatron Searches

- World's highest energy collider
 - Emphasis on massive particles approaching the kinematic limit.
 - $p\overline{p}$ collisions complementary to e^+e^-
 - High energy & rates, large cross sections for particles with color charge

Tevatron Detectors

- Upgraded CDF & DØ detectors have unique capabilities
 - CDF: High resolution trackers, time-of-flight chamber
 - DØ: Broad muon coverage, finely segmented calorimeter
- Complementarity between detectors

8 May, 2009

Making a Discovery

Strategies

- Probe well-motivated models
- Search for clear indications of new physics

Study all final states

Issues

- How do you know when it's a discovery?
- How do you know you haven't missed a discovery?

A Well-Motivated Model

Supersymmetry

Regulates Higgs boson mass

Predicts force unification.

Explains dark matter

Supersymmetry at the Tevatron

Candidates for discovery

- Sparticles with highest cross sections
 - Squarks and gluinos
- Sparticles with lowest masses
 - Charginos, neutralinos, stop squarks
- Final states depend on mass hierarchy
- Interpret results using a reference model
 mSUGRA most common (5 parameters)
 - Typically assume lightest sparticle stable

Squark and Gluino Searches

2 jets: \$\tilde{qq} \rightarrow qq\tilde{\chi}_{I^0} \tilde{\chi}_{I^0} (m_{\tilde{q}} < m_{\tilde{g}})\$
3 jets: \$\tilde{qg} \rightarrow qqq\tilde{\chi}_{I^0} \tilde{\chi}_{I^0} (m_{\tilde{q}} < m_{\tilde{g}})\$
4 jets: \$\tilde{gg} \rightarrow qqqq\tilde{\chi}_{I^0} \tilde{\chi}_{I^0} (m_{\tilde{q}} > m_{\tilde{g}})\$

Challenging backgrounds
 Need to understand \$\mathbb{E}_T\$ tails in multijet events
 At large \$\mathbb{E}_T\$ tt and \$W/Z\$ + jets dominate.

Squark and Gluino Background

- Various methods to estimate background
 - MC-based prediction_
 - Reduce QCD background with selection.
 - Background predicted entirely with MC

samples	2-jets		3-jets	4-jets	
QCD	$4.37 {\pm} 2.01$		$13.34{\pm}4.67$	$15.26 {\pm} 7.60$	
top	1.35 ± 1	.22	$7.56 {\pm} 3.85$	$22.14{\pm}7.29$	
$Z \rightarrow \nu \nu + jets$	$3.95{\pm}1$.09	$5.39{\pm}1.74$	$2.74 {\pm} 0.95$	
$Z \rightarrow ll + jets$	$0.09 {\pm} 0.04$		$0.16 {\pm} 0.11$	$0.14{\pm}0.08$	
$W \rightarrow l\nu + jets$	$6.08 {\pm} 2.15$		$10.69 {\pm} 3.84$	$7.68{\pm}2.85$	
WW/WZ/ZZ	$0.21{\pm}0.19$		$0.35 {\pm} 0.17$	$0.49{\pm}0.34$	
tot SM	16 ± 5		37 ± 12	48 ± 17	
	Region	Observed data			
4-jets			45		
	3-jets		38		
	2-iets		18		

Squark and Gluino Background

Data + MC prediction_

Assume exponentially falling
 E_T spectrum in QCD events

Negligible after selection.

Data-based prediction_

Normalize W/Z + jets prediction to measurement.

Background uncertainty: 6%

Squark and Gluino Limits

- No significant excess in 2 fb⁻¹ of CDF or DØ data
 - Limits on squark & gluino production extended to masses of -400 GeV
 - Exclude m_0 below -300 GeV for $m_{1/2} = 150$ GeV in mSUGRA

Chris Hays, Oxford University

Squark and Gluino Searches

- Other final states possible through cascade decays
 - Squark decays to gaugino & quark, gaugino decays to stau & tau / neutrino

2 jets + $T + I_T$

Gluino decays to sbottom & bottom 4 b-jets + E_T

CDF Collaboration, arXiv:0903.2618 t (2009)

CDF Run II Preliminary 2.5 fb ⁻¹ (Two Inclusive Tags)					
Region	Large Δm Optimization	Small Δm Optimization			
W/Z + jets production	0.1 ± 0.05	0.4 ± 0.3			
Diboson production	0.07 ± 0.02	0.1 ± 0.03			
Top pair production	1.9 ± 1.0	0.6 ± 0.4			
Single top production	0.03 ± 0.01	0.04 ± 0.01			
HF QCD Multijets	1.5 ± 0.7	0.6 ± 0.3			
Light-flavour contamination	0.9 ± 0.3	0.6 ± 0.1			
Total expected	4.5 ± 1.4	2.3 ± 0.8			
Observed	5	2			
Signal M(\tilde{g})=335, M(\tilde{b})=260	14.9 ± 5.0	2			
Signal M(\tilde{g})=335, M(\tilde{b})=315	-	8.5 ± 2.8			

8 May, 2009

Stop Searches

Large top mass results in large stop mass splitting
 One stop expected to be light.

- Final states depend on mass difference $m_{\tilde{t}} m_{\tilde{X}}$
 - $m_{\tilde{t}} > m_W + m_b \text{ or } m_{\tilde{X}^{\pm}} + m_b : l^+l^- + bb + \not\!\!\!E_T$
 - - $m_{\tilde{t}} < m_{\tilde{X}^{\pm}} + m_{LSP}$: two long-lived charged massive particles

CMSSM

X, X, ____)

900

500

400

100

900

800

700

600

500

400

300

Stop Searches

 \Rightarrow Dilepton + b-jets + $\not\!\!\!E_T$ final state same as $t\bar{t}$ production.

Search for top-like production at lower mass

Total SM Background contributions								
Selection	Data	Background	Signal A	Signal B				
Preselection	735	736 ± 15	458	29.7	60.6	188	34.0 ± 1	26.3 ± 0.7
Emu 1	106	106 ± 5	23	23.5	38.7	21	10.6 ± 0.7	19.4 ± 0.6
Emu 2	71	77 ± 4	5.9	20.0	36.2	15	8.4 ± 0.7	17.6 ± 0.6
Emu 3	61	65 ± 4	0.7	16.4	34.5	13	6.0 ± 0.6	16.1 ± 0.5

DØ Collaboration, PLB 675, 289 (2009)

Stop Searches

Charm tagging can reduce background

	$m_{\tilde{t}}$	H_T	S	Observed	Predicted
DØ Collaboration,	95 - 130	> 100	< 260	83	$85.3 \pm 1.8^{+12.8}_{-13.0}$
PLB 665, 1 (2008)	135-145	> 140	< 300	57	$59.0 \pm 1.6^{+8.5}_{-8.8}$
	150 - 160	> 140	< 320	66	$66.6 \pm 1.1^{+9.6}_{-10.0}$

SM process	Number of events
$W(\rightarrow \ell \nu) + \text{jets}$	20.0 ± 0.7
$Z(\rightarrow \nu \bar{\nu}) + \text{jets}$	15.8 ± 0.5
$W(\rightarrow \ell \nu) + HF(b\bar{b}, c\bar{c})$	12.6 ± 0.5
$Z(\rightarrow \nu \bar{\nu}) + HF(b\bar{b}, c\bar{c})$	11.6 ± 0.4
$t\bar{t}$ and single top	3.7 ± 0.1
WW, WZ, ZZ	2.7 ± 0.1
$Z(\rightarrow \ell \ell) \ (e, \mu, \tau) + \text{jets}$	0.1 ± 0.01
$Z(\rightarrow \ell \ell) (e, \mu, \tau) + HF (b\bar{b}, c\bar{c})$	0.1 ± 0.01
Total	66.6 ± 1.1

Chris Hays, Oxford University

Stop / Gaugino / Stau Search

Use time-of-flight measurements to search for long-lived particles

CDF: TOF and inner tracking detectors; DØ: muon chambers

Chris Hays, Oxford University

Gaugino-Pair Searches

Low background to chargino + neutralino production.

- Decay through W, Z, or slepton.
- Final state: three leptons plus $\not\!\!\!E_T$

$z_{ii} = z_{ii}$	$\lambda_1 \lambda_2$	
Signal	Background	Observed
$2.25 \pm 0.13 ({\rm stat}) \pm 0.29 ({\rm syst})$	$0.49 \pm 0.04 ({\rm stat}) \pm 0.08 ({\rm syst})$	1
$1.61 \pm 0.11 ({\rm stat}) \pm 0.21 ({\rm syst})$	$0.25 \pm 0.03 ({\rm stat}) \pm 0.03 ({\rm syst})$	0
$0.68 \pm 0.07 ({\rm stat}) \pm 0.09 ({\rm syst})$	$0.14 \pm 0.02(\text{stat}) \pm 0.02(\text{syst})$	0
$4.5\pm0.2(\mathrm{stat})\pm0.6(\mathrm{syst})$	$0.88 \pm 0.05 (\text{stat}) \pm 0.13 (\text{syst})$	1
$4.44 \pm 0.19 ({\rm stat}) \pm 0.58 ({\rm syst})$	$3.22 \pm 0.48(\text{stat}) \pm 0.53(\text{syst})$	4
$2.42 \pm 0.14 ({\rm stat}) \pm 0.32 ({\rm syst})$	$2.28 \pm 0.47 (\text{stat}) \pm 0.42 (\text{syst})$	2
$6.9\pm0.2(\mathrm{stat})\pm0.9(\mathrm{syst})$	$5.5 \pm 0.7(\text{stat}) \pm 0.9(\text{syst})$	6
	$\begin{array}{c} \text{Signal} \\ \hline \\ \text{Signal} \\ 2.25 \pm 0.13(\text{stat}) \pm 0.29(\text{syst}) \\ 1.61 \pm 0.11(\text{stat}) \pm 0.21(\text{syst}) \\ 0.68 \pm 0.07(\text{stat}) \pm 0.09(\text{syst}) \\ \hline \\ 4.5 \pm 0.2(\text{stat}) \pm 0.6(\text{syst}) \\ \hline \\ 4.44 \pm 0.19(\text{stat}) \pm 0.58(\text{syst}) \\ 2.42 \pm 0.14(\text{stat}) \pm 0.32(\text{syst}) \\ \hline \\ 6.9 \pm 0.2(\text{stat}) \pm 0.9(\text{syst}) \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Separate leptons into high and low purity

8 May, 2009

Chris Hays, Oxford University

18

Gaugino-Pair Searches

Results interpreted in the context of mSUGRA
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240
240

- Limits depend on relative neutralino-slepton masses
 - $m_{\chi_2} > m_{slepton}$ increases branching ratio to e/μ

 $m_{\chi_2} \approx m_{slepton}$ reduces acceptance to lowest p_T lepton.

(GeV/c

150 (tx) ¥(x) ₩

140

130

120

110

140

m_o (GeV/c²)

 $m(\tilde{\chi}_{2}^{0}) < m(\tilde{l}_{R})$

ਵ[ੂ] 220

210

200

190

LEP direct limit

 $m(\tilde{\chi}_2^0) > m(\hat{l}$

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Making a Discovery

Strategies

- Probe well-motivated models
- Search for clear indications of new physics
- Study all final states

Issues

- How do you know when it's a discovery?
- How do you know you haven't missed a discovery?

Indicators of New Physics

Mass resonances & final states with low SM background

- Fully reconstructed resonance an unambiguous sign of a new particle
 - Wide variety of possible resonances
 - Neutral, charged, fractionally & doubly charged
 - Decays to fermions and / or gauge bosons
 - Strategies for resonance search:
 - Calculate significance, accounting for fluctuations over full spectrum.
 - Judiciously choose binning & variable for mass scan.

- Final states with little background offer unique discovery opportunity
 - Can convincingly demonstrate new physics and study sample with high purity

Neutral Resonances

Many decays fully reconstructable

Electrons, muons, light quarks, photons

Constant-resolution variable simplifies narrow-resonance search

- Muons: 1/m
 - $\sigma_{pT} \propto p_{T^2}, \sigma_{I/pT} = constant.$
- Electrons & photons: log m
 - $\sigma_{ET} \propto E_T$, $\sigma_{logET} = constant$.
- Jets: m^{1/2}
 - $\sigma_{ET} \propto E_T^{I/2}, \sigma_{sqrt(ET)} = constant.$

Neutral Resonance Searches

Resonances predicted by huge range of new physics

Supersymmetry, extra dimensions, extra gauge groups and unification.

Chris Hays, Oxford University

Neutral Resonances

Low-Background Searches

Most exciting Tevatron hints have been low-background events

Look at both signature-based and model-based final states

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	lyy	scalar	resulting in sam	ie-sign top qua	rks	magnetic monopole
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Multi-Photo	n + Lepton Eve	ents, $\mathcal{L} = 929 \text{ pb}^{-1}$	CDF Run II Preliminary (2.0) fb ⁻¹)	106	
$ \begin{array}{c} W^{\pm} \gamma \gamma & 0.021 \pm 0.004 & 0.015 \pm 0.003 & 0.036 \pm 0.006 \\ Z\gamma \gamma & 0.045 \pm 0.005 & 0.038 \pm 0.005 & 0.083 \pm 0.007 \\ \ellee, \ell\gamma e, e \rightarrow \gamma & 0.41 \pm 0.12 & 0^{+0.03}_{-0.0} & 0.41 \pm 0.12 \\ \elljj, \ell\gamma j, j \rightarrow \gamma & 0.05 \pm 0.05 & 0.05 & 0.00 \pm 0.05 \\ \hline \text{Total SM} \\ \hline \text{Prediction} & 0.53 \pm 0.13 & 0.10 \pm 0.06 & 0.62 \pm 0.15 \\ \hline \text{Observed} \\ in Data & 0 & 0 \\ e\mu + Photon Events, \mathcal{L} = 929 \text{ pb}^{-+} \\ \overline{Z\gamma\gamma} & 0.06 \pm 0.01 \\ W^{\pm}\gamma & 0.005 \pm 0.01 \\ ee\mu, e \rightarrow \gamma & 0.06 \pm 0.01 \\ W^{\pm}\gamma & 0.00 \pm 0.05 \\ rotal SM \\ \hline \text{Prediction} & 1.0 \pm 0.3 \\ \hline \text{Observed} \\ \text{in Data} & 0 \\ \hline \text{CDF} \\ \text{Collaboration}, \\ PRD & 75, \\ \text{I1200I (2007)} \\ \hline \text{CDF} \\ \hline \text{CDF} \\ \text{Collaboration}, \\ PRD & 75, \\ \text{I1200I (2007)} \\ \hline \text{CDF} \\ \hline \text{CDF} \\ \hline \text{Collaboration}, \\ PRL & 9, 0 \pm 0.1 \\ \hline \text{CDF} \\ \text{Collaboration}, \\ PRL & 9, 0 \pm 0.1 \\ W + jets & 0.60 & 0.71 & 0.50 & 1.8 \pm 1.8 \\ \hline \text{Total } 0, 9 & 1.0 & 1.0 & 2.9 \pm 1.8 \\ \hline \text{Data} & 0 & 1 & 2 & 3 \\ \hline \text{CDF} \\ \hline \text{Collaboration}, \\ PRL & 96, 201801 (2006) \\ \hline \text{CDF} \\ \text{Collaboration}, \\ PRL & 96, 201801 (2006) \\ \hline \text{CDF} \\ \hline \text{Collaboration}, \\ PRL & 96, 201801 (2006) \\ \hline \text{CDF} \\ \hline \text{Collaboration}, \\ \hline \text{CDF} \\ \hline \text{Collaboration}, \\ PRL & 96, 201801 (2006) \\ \hline \text{Collaboration}, \\ \hline \text{CDF} \\ \hline Collabora$	SM Source	$e\gamma\gamma$	$\mu\gamma\gamma$ $(e + \mu)\gamma\gamma$	e us	► Data Bg. uncert.	IUE	CDF Run II
$ \begin{array}{c} 2\gamma\gamma & 0.045 \pm 0.005 & 0.038 \pm 0.005 & 0.083 \pm 0.007 \\ lee, (\gamma e, e \rightarrow \gamma & 0.41 \pm 0.12 & 0 \pm 0.03 \\ leg, (\gamma j, j \rightarrow \gamma & 0.05 \pm 0.05 & 0.05 \pm 0.05 & 0.10 \pm 0.09 \\ \hline \text{Total SM} \\ \hline \text{Prediction} & 0.53 \pm 0.13 & 0.10 \pm 0.06 & 0.62 \pm 0.15 \\ \hline \text{Observed} \\ \hline \text{in Data} & 0 & 0 \\ e_{\mu} + Photon Events, \mathcal{L} = 929 \text{ pb}^{-1} \\ \overline{\text{SM Source}} & e_{\mu\gamma} + X \\ \overline{2\gamma^{\gamma}} & 0.06 \pm 0.01 \\ W^{\gamma}\gamma & 0.011 \pm 0.003 \\ e_{\muj}, j \rightarrow \gamma & 0.05 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.05 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.05 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.05 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.05 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.05 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.005 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.005 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.005 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.005 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.005 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.005 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.005 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.005 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.005 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.005 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.005 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.005 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.005 \pm 0.01 \\ e_{\muj}, j \rightarrow \gamma & 0.005 \pm 0.01 \\ PRD 75, \\ II200I (2007) \end{array} \right) \begin{array}{c} Surce & ee & \mu\mu & e\mu & l \\ \hline Surce & ee & \mu\mu & e\mu & l \\ \hline Surce & ee & \mu\mu & e\mu & l \\ \hline Surce & ee & \mu\mu & e\mu & l \\ \hline U & 0.01 & 0.03 & 0.04 & 0.1 \pm 0.1 \\ \hline U & $	$W^{\pm}\gamma\gamma$ ($0.021 \pm 0.004 \ 0.015$	$5 \pm 0.003 \ 0.036 \pm 0.006$		$\Box Z \rightarrow ll$	ဖ 10 ီ	▲
$ \begin{array}{c} \ellee, \ell\gamma e, e \to \gamma & 0.41 \pm 0.12 & 0 \stackrel{+0.03}{-0.05} & 0.01 \pm 0.02 \\ \elljj, \ell\gamma j, j \to \gamma & 0.05 \pm 0.05 & 0.05 \pm 0.05 & 0.10 \pm 0.09 \\ \hline \text{Total SM} \\ \hline \text{Prediction} & 0.53 \pm 0.13 & 0.10 \pm 0.06 & 0.62 \pm 0.15 \\ \hline \text{in Data} & 0 & 0 & 0 \\ e\mu + \text{Photon Events, } \mathcal{L} = 929 \text{ pb}^{-1} \\ \hline \text{SM} \\ 2\gamma\gamma & 0.06 \pm 0.01 \\ \elljj, \gamma\gamma & 0.06 \pm 0.01 \\ \ellj\gamma & \gamma\gamma & 0.05 \pm 0.01 \\ e\muj, \gamma\gamma & 0.005 \pm 0.05 \\ rej, \gamma\gamma & 0.005 \pm 0.01 \\ e\muj, \gamma\gamma & 0.005 \pm 0.01 \\ e\muj, \gamma\gamma & 0.005 \pm 0.01 \\ rej, \gamma\gamma & 0.005 \pm 0.01 \\ rej,$	$Z\gamma\gamma$ 0	$0.045 \pm 0.005 \ 0.038$	$8 \pm 0.005 \ 0.083 \pm 0.007$	1.5 –	Fakes	a a	Trigger Sample
$ \begin{array}{c} \underbrace{ljj, l\gamma j, j \rightarrow \gamma \ 0.05 \pm 0.05 \ 0.05 \pm 0.05 \ 0.05 \pm 0.05 \ 0.10 \pm 0.09 \\ \hline \text{Total SM} \\ \hline \text{Prediction} \ 0.53 \pm 0.13 \ 0.10 \pm 0.06 \ 0.62 \pm 0.15 \\ \hline \text{Observed} \\ in \text{Data} \ 0 \ 0 \\ e\mu + Photon Events, \underbrace{\mathcal{L} = 929 \text{ pb}^{-1} \\ \underline{SM \ Source} \ e\mu\gamma + X \\ \hline 2\gamma^{\gamma} \ 0.06 \pm 0.01 \\ \underline{K^{2}\gamma} \ 0.06 \pm 0.01 \\ \underline{K^{2}\gamma} \ 0.06 \pm 0.01 \\ \underline{K^{2}\gamma} \ 0.06 \pm 0.05 \\ e\muj, e \rightarrow \gamma \ 0.06 \pm 0.05 \\ e\muj, e \rightarrow \gamma \ 0.06 \pm 0.05 \\ e\muj, e \rightarrow \gamma \ 0.06 \pm 0.05 \\ \hline \text{Total SM} \\ \hline PRD \ 75, \\ \hline \text{Total SM} \\ \hline \text{Prediction} \ 1.0 \pm 0.3 \\ \hline \text{Observed} \\ in \text{Data} \ 0 \end{array} \right) \\ \hline CDF \ Collaboration, \\ PRD \ 75, \\ \hline \text{Total SM} \\ \hline \text{Prediction} \ 1.0 \pm 0.3 \\ \hline \text{Observed} \\ in \text{Data} \ 0 \end{array} \right) \\ \hline CDF \ Collaboration, \\ PRD \ 75, \\ \hline \text{Total SM} \\ \hline \text{Prediction} \ 1.0 \pm 0.3 \\ \hline \text{Observed} \\ in \text{Data} \ 0 \end{array} \\ \hline CDF \ Collaboration, \\ PRD \ 75, \\ \hline \text{Total SM} \\ \hline \text{Prediction} \ 1.0 \pm 0.3 \\ \hline \text{Observed} \\ in \text{Data} \ 0 \end{array} \\ \hline CDF \ Collaboration, \\ PRD \ 75, \\ \hline \text{Total SM} \\ \hline \text{Prediction} \ 1.0 \pm 0.3 \\ \hline \text{Observed} \\ in \text{Data} \ 0 \end{array} \\ \hline \begin{array}{c} \text{CDF \ Collaboration, \\ PRD \ 75, \\ \text{Total SM} \\ \hline \text{Total SM} \\ \hline \text{Prediction} \ 1.0 \pm 0.3 \\ \hline \text{Observed} \\ in \text{Data} \ 0 \end{array} \\ \hline \begin{array}{c} \text{CDF \ Collaboration, \\ PRL \ 96, 201801 (2006) \\ \hline \text{CDF \ Collaboration, } \\ PRL \ 96, 201801 (2006) \\ \hline \text{Collaboration, } \\ PRL \ 96, 201801 (2006) \\ \hline \text{CDF \ Collaboration, } \\ \hline \text{CDF \ Collaboration, } \\ \hline \begin{array}{c} \text{CDF \ Collaboration, \\ PRL \ 96, 201801 (2006) \\ \hline \text{CDF \ Collaboration, } \\ \hline \text{CDF \ Collaboration, } \\ \hline \text{CDF \ Collaboration, } \\ \hline \text{CDF \ Collaboration, PRL \ 102, 0.41801 (2009) \\ \hline \end{array}$	$lee, l\gamma e, e \rightarrow \gamma$	0.41 ± 0.12 0	$^{+0.03}_{-0.0}$ 0.41 ± 0.12			<u>9</u> 10 -	Min Bias Data
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\ell j j, \ell \gamma j, j \rightarrow \gamma$	0.05 ± 0.05 0.05	5 ± 0.05 0.10 ± 0.09			2 4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total SM					रहे 10 🚽	P
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Prediction	$0.53 \pm 0.13 0.10$	$0 \pm 0.06 0.62 \pm 0.15$			₽ ,‡	_▲ ਟ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Observed					<u>਼</u> 10 ⁻ ਵ	B
$\begin{array}{c} \frac{e\mu + Photon Events, \mathcal{L} = 929 \text{ pb}^{-1}}{SM \text{ Source } e\mu\gamma + X} \\ \overline{Z}\gamma^{*} + \gamma & 0.66 \pm 0.09 \\ W^{\pm}\gamma & 0.10^{\pm 0.10} \\ Z\gamma\gamma & 0.00 \pm 0.001 \\ \overline{Z}\gamma\gamma & 0.001 \pm 0.003 \\ e\muj, j \to \gamma & 0.05 \pm 0.01 \\ ee\mu, e \to \gamma & 0.06 \pm 0.05 \\ W^{\pm}\gamma, Z\gamma' + \gamma \to \tau\gamma & 0.09^{\pm 0.18} \\ \overline{Dtal SM} \\ Prediction & 1.0 \pm 0.3 \\ Observed \\ in Data & 0 \end{array} \right) \\ \begin{array}{c} CDF \\ Collaboration, \\ PRD 75, \\ I1200I (2007) \end{array} \right) \\ \hline CDF Collaboration, PRL 102, 04180I (2009) \end{array} \right) \\ \hline CDF Collaboration, PRL 102, 04180I (2009) \end{array} $	in Data	0	0 0	0.5 –			▼ ,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$e\mu + Photon Ev$	$ents, \ \mathcal{L} = 929 \ \mathrm{pb}^{-1}$				ĘŪ	V ⁺ , ⊖ ⁻ ,
$\begin{array}{c} Z\gamma\gamma^{*} + \gamma & 0.66 \pm 0.09 \\ W^{\pm}\gamma & 0.10^{+0.18}_{-0.10} \\ Z\gamma\gamma & 0.06 \pm 0.01 \\ w\gamma\gamma & 0.01 \pm 0.003 \\ e\mu j, j \rightarrow \gamma & 0.05 \pm 0.01 \\ ee\mu, e \rightarrow \gamma & 0.05 \pm 0.01 \\ ee\mu, e \rightarrow \gamma & 0.00 \pm 0.05 \\ Total SM \\ Prediction & 1.0 \pm 0.3 \\ Observed \\ in Data & 0 \end{array} $ $\begin{array}{c} CDF \ Collaboration, \\ PRD \ 75, \\ II200I \ (2007) \end{array}$ $\begin{array}{c} Source \ ee \ \mu\mu \ e\mu \ ll \\ Z \rightarrow ll \ 0.01 \ 0.03 \ 0.04 \ 0.1 \pm 0.1 \\ tt \ 0.27 \ 0.26 \ 0.42 \ 0.9 \pm 0.1 \\ W + jets \ 0.60 \ 0.71 \ 0.50 \ 1.8 \pm 1.8 \\ \hline Data \ 0 \ 1 \ 2 \ 3 \end{array}$ $\begin{array}{c} CDF \ Collaboration, \\ PRL \ 96, \ 20180I \ (2006) \\ PRL \ 96, \ 20180I \ (2006) \end{array}$	SM Source	$e\mu\gamma + X$	CDF			ĨZ ₁	↓ ↓ 5,⊒
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Z/\gamma^* + \gamma$	0.66 ± 0.09	- ODI	0 1 2 3	4 5 6	'E	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$W^{\pm}\gamma$	$0.10^{+0.18}_{-0.10}$	Collaboration		IN _{Jets}	10 ⁻¹	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Z\gamma\gamma$	0.06 ± 0.01		Source $ee \mu\mu$	$e\mu$ ll	10 0	50 100 150 200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$W\gamma\gamma$	0.011 ± 0.003	- PRD 75.	$Z \rightarrow ll$ 0.01 0.03	$0.04 0.1 \pm 0.1$		Cot Width Cut [ns]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$e\mu j, \ j \to \gamma$	0.05 ± 0.01		tt 0.27 0.26	$0.42 0.9 \pm 0.1$		oot maar out [no]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ee\mu, e \rightarrow \gamma$	0.06 ± 0.05	- 112001 (2007)	W + jets 0.60 0.71	$0.50 1.8 \pm 1.8$		CDE Call aboution
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$W = \gamma, Z_{\gamma} + \gamma \rightarrow \tau \gamma$	$0.09_{-0.09}$	_	Total 0.9 1.0	$1.0 2.9 \pm 1.8$		CDF Couaboration,
Data Observed in Data 0	Prediction	1.0 ± 0.3		Data 0 1	2 3		DPI of 201801 (2006)
in Data 0 CDF Collaboration, PRL 102, 041801 (2009)	Observed	1.0 ± 0.3					$1 \times 201001 (2000)$
	in Data	0	$_{-}$ CDF C	ollaboration, P	RL 102, 04180	I (2009)	

8 May, 2009

Chris Hays, Oxford University

Making a Discovery

Strategies

- Probe well-motivated models
- Search for clear indications of new physics

Study all final states

Issues

- How do you know when it's a discovery?
- How do you know you haven't missed a discovery?

Global Search

Cover all final states with global data search

- Develop global SM prediction using MC, simulation, corrections
- Compare normalization and shapes of data-populated final states
- Search final states for mass resonances
- Combine final states and search for excesses at large total p_T

Global Search Results

- Statistically significant shape and mass discrepancies observed
 - CDF: Interpreted as mismodelling of radiative jet events
 - No excess at high total p_T (expect 8% of experiments to observe more significant excess)
 - DØ: Interpreted as mismodelling of muon resolution tails

Making a Discovery

- Strategies
 - Probe well-motivated models
 - Search for clear indications of new physics
 - Study all final states

Issues

How do you know when it's a discovery?

How do you know you haven't missed a discovery?

Potential Discoveries

Any given data set shows some discrepancies

- Most are statistical fluctuations
 - Accounted for in global search
- Can also arise from mismodelled background

CDF Collaboration, PRL 102, 031801 (2009)

CDF Run II Preliminary

Chris Hays, Oxford University

Making a Discovery

L dt = 2.3 fb⁻¹ **CDF II preliminary** Strategies بر 10 10 Total background Drell-Yar ເ ເ 10 Hadron fakes Cosmic Bays Events 10 Probe well-motivated models 10 10 Search for clear indications of new physics 10 10 Study all final states 10-4 2 14 m⁻¹_{µµ} (TeV)⁻¹ 10 12 CDF Run II Preliminary (2.0 fb⁻¹) calculation of σ accounts for the tria Issues $\begin{array}{c} be e^{\pm}; \\ be e^{\pm}; \\ be e^{\pm}; \\ \tau^{\pm}; \\ \mu^{\pm}; \\ \mu^{\pm}$ How do you know when it's a discovery? How do you know you haven't missed a discovery?

2j high 2j low- $2j2\tau^{\pm}$ $2j2\gamma p$ $2j2\gamma$ $2j2\gamma$

Missing a Discovery

- Unlikely to find what you aren't looking for
 - Global search encompasses all 'standard' final states
 - Generally less sensitive than targeted searches
 - Need to follow up all bints

8 May, 2009

CDF Run 2 (2.8 fb⁻¹)

10²

10¹

10⁰

ŧ

observed

Preliminary

Missing a Discovery

More creative final states may not be covered

- Feature of SUSY: large parameter space leads to unusual final states
 - Need to know the predictions of these corners of parameter space.

• Other theories with non-standard final states?

Towards the Next Discovery

Comprehensive Tevatron search program.

- Global, targeted, non-standard searches
 - What is missing?

8 May, 2009

- Constantly pursuing hints
 - Suggestions in data could still lead to discovery

"This could be the discovery of the century. Depending, of course, on how far down it goes."

May be many years before first LHC discovery
 Will we know it when we see it?

Global Search Hints

Five most significant excesses different for CDF & DØ

Most significant common discrepancy in same-sign e-µ

