Flavour Physics Survey

Roman Zwicky University of Southampton

HEP Forum Cosoners House May 7-8 2009 From the Tevatron to the LHC

CKM & CP-violation (4 slides)

MFV -- theory of flavour (2 slides)

Flavour tools (I slide)

Ilavour at LHCb & 3 main examples

S current puzzles in flavour physics

Epilogue

CKM-triangle from tree-level decays

Unitarity clock .. where will it stop?

- ≥ δ|Vub/Vcb| ~ 7% from B→πIν (Super-B B→τν) |
- δ γ ~ 12° from B→DK & other (**LHCb** δγ ~ 2.4° 10fb⁻¹)

Theory of flavours ...

Weak gauge sector: $\cos(\theta_W) = M_W/M_Z$ CKM empirically : $\sin(\theta_C) = M_{\pi}/M_K = (m_d/m_s)^{1/2}$ Cabibbo Universality

Higgs fundamental \rightarrow extend Higgs sector \rightarrow new FCNC likely (predictive) (Weinberg-Glashow'77 conditions: A) $T_{3R/L}(Q) = f_{L/R}(Q) \dots B$) single source for Yukawa terms)

- <u>Froggat-Nielsen</u> mechanism '77 $|V_{qq'}| \sim \epsilon^{f(charges q \& q' under U_{FN}(I))}$ Links mass & CKM hierarchy with (mt<35GeV) $(m_q/m_{q'}) \sim \epsilon^{g(charges q \& q' under U_{FN}(I))}$
- <u>Discrete non-abelain symmetries</u> (Wyler'79 predicts $m_t \sim 20 \text{GeV}$...)
- Field revived by PMNS (lepton mixing) matrix (e.g. tri-bi maximal mixing conjecture) A4 is popular in conjunction scalar sector extensions e.g. Ma' et al 01 Also applied to both quark & lepton sectors (talk by Steve King?) $\approx \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & -0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ 1 & 1 & 1 \end{pmatrix}$

Higgs composite e.g. Extended Technicolor

- A) capable generating family hierarchy
- B) doublet mass splitting challenge
- (N.B. FCNC and S tamed by waking Technicolor)

FCNC mass-generation connected new element strong dynamics

WL.

 Q_R

Flavour physics at LHCb

🔆 B factories Belle, BaBar designed mass produce Bd mesons -- (charm possible large statistics)

At TeVatron B_s study began -- (some SM results & some open issues ϕ_s later ...)

LHCb collider experiment with: (~ 10¹² bb/ year)

I. producing 'all' mesons B_d, B_s, D₀, D_s

2. large statistics

3. detector: can't afford V, good μ , improvable (upgrade) γ

	Channel	Yield	B/S	Precision					
γ	$B_s \rightarrow D_s^{-+} K^{+-}$	5.4k	< 1.0	σ(γ) ~ 14°	1				
	$B_d \rightarrow \pi^+ \pi^-$	36k	0.46	σ(γ) ~ 4°					
	$B_s \rightarrow K^+ K^-$	36k	< 0.06		1				
	$B_d \rightarrow D^0$ (K π ,KK) K ^{*0}	3.4 k, 0.5 k, 0.6 k	<0.3, <1.7, < 1.4	σ(γ) ~ 7° - 10°					
	$B^- \rightarrow D^0 (K^- \pi^+, K^+ \pi^-) K^-$	28k, 0.5k	0.6, 1.5	σ(γ) ~ 8° - 16 7	fro	m F.Muheim talk HEP	forum '07 for 2	0fb ^{-∣} (~lvr)	and I4TeV
	$B^- \rightarrow D^0 (K^+ K^-, \pi^+ \pi^-) K^-$	4.3 k	1.0						
	$B^- \rightarrow D^0 (K_S \pi^+ \pi^-) K^-$	1.5 - 5k	< 0.7		VAN	D 11 / 11	040	1 00	
α	$B_d \rightarrow \pi^* \pi^- \pi^0$	14k	< 0.8	σ(α) ~ 10º	β	$B_d \rightarrow J/\psi(\mu\mu)K_S$	216k	0.8	σ(sin2β) ~ 0.022
	$B \to \rho^* \rho^0, \rho^+ \rho^-, \rho^0 \rho^0$	9k, 2k, 1k	1, <5, < 4			B _d → φK _S	0.8k	<2.4	σ(sin2β) ~ 0.32
			+ +		∆ms	$B_s \rightarrow D_s^- \pi^+$	80k	0.3	σ(Δm _s) ~ 0.01 ps ⁻¹
				00	φs	B _s → J/ψ(μμ)φ	131k	0.12	σ(φ _s) ~ 0.023
				- 1	22	$B_s \rightarrow \phi \phi$	4k	<0.8	σ(φ _s) ~ 0.10
				000		$B_{s} \to \mu^{*} \mu^{-}$	20	< 5.7	
				o o	Rare	$B_d \rightarrow K^{*0} \mu^+ \mu^-$	4.4 k	< 2.6	σ(C7 ^{eff} /C9 ^{eff}) ~0.13
					decays	$B_d \rightarrow K^{\star 0} \gamma$	35k	< 0.7	σ(A _{CP}) ~0.01
				00		$B_s \rightarrow \phi \gamma$	9.3 k	< 2.4	
				00	charm	$D^{*+} \rightarrow D^0 (K^- \pi^+) \pi^+$	50 M		

$B_s \rightarrow J/\Psi \varphi$

 \checkmark Cousin (≠ final state spin) of gold platted B_d → J/Ψ K_s sin(2β)

- Single dominant tree amplitude \rightarrow no direct \checkmark
- Indirect/time-dep. CP in B_s-mixing

$$(\Phi_s)_{SM} \cong -2\lambda^2\eta \cong -2^{\circ} (N_g^{eff}=2)$$

• Rate absence of strong phases (sake of simplicity) and for mixing parameters $|p/q|_s = 1$

S

 B_s

$$\Gamma(B_s(\bar{B}_s) \to f) \sim \cosh(\frac{\Delta\Gamma_s t}{2}) - \cos(\phi_s)\sinh(\frac{\Delta\Gamma_s t}{2}) \pm \sin(\phi_s)\sin(\Delta M_s t),$$

c.t

 \bar{B}_s

h

Extract mixing phase (SM small) ϕ_s Large phase unambiguous signal for new $\not \to f$ out MFV'

• Alternatively: ϕ_s also be extracted from $B_s \rightarrow \varphi \varphi$ Penguin affected by new physics

- SM rate will be measured <2fb⁻¹ @LHCb
- Flavour brother $B_d \rightarrow \mu \mu$ double Cabibbo suppressed 1/25 (upgrade?)

Epilogue

- Did not talk about: a) helicity test in B_s→φγ (right handed currents)
 b) Small QP D-decays GIM & Cabibbo⁴ & loop suppressed small CP-background use "CPT filter"
- LHC(b) eagerly awaited for -- ϕ_s -puzzle
- The CKM and PMNS matrix are (so) non-random that it is hard to conceive that there is no theory of flavour.
- The connection between CKM and PMNS matrix with the Higgs mechanism makes it seem plausible that the theory(ies) behind it are connected with what is underneath the Higgs
- Where we are (reasonably) convinced that the LHC will uncover what unitarizes W_L - W_L scattering, we are not sure which experiments gets the first clue of BSM ... Hopefully both types will see something and benefit from each other ...

Thanks for you attention!

Backup Slides

Minimal Flavour Violation (MFV)

