Limits to Discovery: Extended discussion

- * Practical Issues
- X Idealogical Issues

This short intro is intended to provoke discussion and is by no means a thorough review

Wade Fisher
Fermilab

UK HEP Forum Discussion Session

May 7th 2009

Practical Considerations

Goal: Evaluate a statistical result using some number of input channels. What ingredients will impact your result?

For authors of statistical software:

What choices must you make in order to deliver a robust product?

For the teams who combine input channels:

What are the show-stoppers? Where are the speed-bumps?

For those who will interpret the quality of the result:

What assumptions were made? How do they impact the result?

For Software Authors

* Assuming you've already made the philosophical choices of paradigm, test statistic, etc.

Where are the sharp edges upon which users may impale themselves?

X How do you handle overflow bins?

Analyzers frequently do not consider the contents of overflow bins.

This leads to unexpected (and often impossible to find) errors.

<u>Suggestion:</u> Ignore overflow bins. Analyzers can add these to the histogram if they are serious about it.

X How do you handle statistical uncertainties?

Bin-by-bin statistical uncertainties can be the largest uncertainty in a calculation.

Did the analyzer get this right? How do you know?

<u>Suggestion:</u> Integrate careful tests of bin-by-bin errors and reject them (or flag them) if they are suspect. (error larger than bin content, error==0, etc)

For Software Authors

* How does one model systematics which vary as much as 50%?We generally model uncertainties with Gaussian priors.

<u>Lesson:</u> Over-inflated systematics have implications beyond the obvious ones

Non-physical, negative values populated as σ grows.

Must choose appropriate model for uncertainties approaching zero rate.

For Combiners

- Given a list of input channels, what stands between you and your results?
- **X** What is your deadline?
 - Do you have enough time? Will the inputs change mid-calculation?
 - <u>Suggestion:</u> Be very pragmatic about deadlines and the freezing of inputs. Don't set yourself up to fail.
- * Are you prepared to combine channels (or experiments)?
 - Are all physics model choices identical? Are systematic correlated?
 - If so, do all inputs use the same assumptions and conventions?
 - <u>Suggestion:</u> The combination effort begins many months before the actual combination. Decide on combination parameters at analysis design time.
- * Analyzers are harried! How can you alleviate the burden on analyzers?

 Relative distribution of effort in bug fixes, upgrades, mods etc is important.
 - <u>Suggestion:</u> Implement an input format framework that is as flexible as possible. Educate analyzers on conventions early on.

For Reviewers

- Y Presented with a result, how can you judge the quality?
 What assumptions are likely to have been made?
- X Gaussian truncationSee earlier slide....
- What assumptions were made about nuisance parameter priors? We generally assume Gaussian and parametrize by 1σ . Does $3\sigma = 3 \times 1\sigma$? Must consider impact on input, not nuisance parameter.

For Reviewers

- * Presented with a result, how can you judge the quality?
 What assumptions are likely to have been made?
- X Gaussian truncationSee earlier slide....
- What assumptions were made about nuisance parameter priors? We generally assume Gaussian and parametrize by 1σ . Does $3\sigma = 3 \times 1\sigma$? Must consider impact on input, not nuisance parameter.

For Reviewers

- * Presented with a result, how can you judge the quality?
 What assumptions are like to have been made?
- What assumptions were made about nuisance parameter priors? We generally assume Gaussian and parametrize by 1σ . Does $3\sigma = 3 \times 1\sigma$? Must consider impact on input, not nuisance parameter.

Potentially large impact on discovery calculations.

For 5-sigma observation, are you frequently probing 3σ for any systematics?

Philosophical Considerations

Outstanding questions and issues to consider.

What questions will your colleages ask of you? Your competitors?

X What is the meaning and benefit of cross-checks with multiple techniques?

Disagreement at which level identifies a problem?

In which cases should different techniques give different answers?

X Coverage:

Do we care about coverage only in the parameter of interest?

What about nuisance parameters?

Bayes only or profile likelihood as well?

X Priors:

Is a non-informative prior the best (only) way to go with Bayes?

Do we learn anything from clever priors? How sensitive are we to the choice?

Philosophical Considerations

X Outstanding questions and issues to consider.

What questions will your colleages (competitors?) ask of you?

Exclusion vs. Discovery

Do we require a consistent (identical?) technique or do we cherry pick?

Do we choose the best or worst result?

Should this depend on the problem?

Summary

* A summary list of topics that tend to plague the folks in the front lines of statistical calculations

A few nitty-gritty practical issues

A few more philosophical issues

Each area is equally important to producing a quality result

Mostly questions & suggestions, no manna from heaven

Hopefully this is a good start for discussion

Not a thorough dissertation on the topics