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Higgs Boson Limits and Discovery:
Some Lessons Learned from the Tevatron (and LEP)

Tom Junk
Fermilab

TeV4LHC Forum, Cosener’s House
May 7-8, 2009

•  Tools in use at the Tevatron for Exclusion and
   Discovery
•  Examples 
•  Practical suggestions for combinations
•  Do’s and Don’ts -- things to be careful about
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Commonly Used Tools for Setting Limits and 
Discovering New Processes in use at the Tevatron

•  Bayesian limits -- common at CDF
•  genlimit code by Joel Heinrich, added to mclimit
   code by Tom Junk
•  Implements posterior integrated over systematic
   uncertainties with a flat prior in cross section in 1D
•  Method described in PDG statistics reveiw
•  Extra feature -- “correlated prior”

•  CLs limits -- common at D0, but used at CDF as well.
•  Collie code by Wade Fisher in use at D0
•  Method described in PDG statistics review
•  mclimit was originally designed to do CLs and still does.
•  TLimit in ROOT is out of date -- no fits for nuisance
   parameters, no shape errors or bin-by-bin errors
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Mini-Review: Bayesian Limits
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Where r is an overall signal scale factor, and θ represents
all nuisance parameters.
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where ni is observed in each bin i, si is the predicted
signal for a fiducial model (SM), and bi is the predicted
background.  Dependence of si and bi on θ includes rate, shape,
and bin-by-bin independent uncertainties.
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Mini-Review: Bayesian Limits
Including uncertainties on nuisance parameters θ

! 

" L (data | r) = L(data | r,#)$ (#)d#%
where π(θ) encodes our prior belief in the values of
the uncertain parameters.  Usually Gaussian centered on
the best estimate and with a width given by the systematic.
The integral is high-dimensional.  Markov Chain MC integration is
quite useful!
Useful for a variety of results:
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Typically π(r) is constant
Other options possible.
Sensitivity to priors a
concern. 

Limits:

Measure r:
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Usually:  shortest interval containing 68% of the posterior
  (other choices possible)
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Bayesian Example:  CDF Higgs Search at mH=160 GeV
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An Example Where Usual Bayesian Software Doesn’t Work

•  Typical Bayesian code assumes fixed background, signal shapes (with 
   systematics) -- scale signal with a scale factor and set the limit on the  scale factor
•  But what if the kinematics of the signal depend on the cross section?  Example -- 
   MSSM Higgs boson decay width scales with tan2β, as does the production cross
    section.
•  Solution -- do a 2D scan and a two-hypothesis test at each mA,tanβ point
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Priors in Non-Cross-Section Parameters

Example: take a flat prior in mH;
can we discover the Higgs boson
by process of elimination?
(assumes exactly one Higgs boson 
exists, and other SM assumptions)

Example:  Flat prior in
log(tanβ) -- even with no
sensitivity, can set non-trivial
limits..
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Bayesian Discovery?
Bayes Factor

! 

B = " L (data | rmax ) / " L (data | r = 0)

Similar definition to the profile likelihood ratio, but instead of maximizing
L, it is averaged overr nuisance parameters in the numerator and
denominator.

Similar criteria for evidence, discovery as profile likelihood.

Physicists would like to check the false discovery rate,
and then we’re back to p-values.

But -- odd behavior of B compared with p-value for even a simple case

J. Heinrich, CDF 9678
http://newton.hep.upenn.edu/~heinrich/bfexample.pdf
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Mini-Review: CLs Limits

•  Based on p-values using the log likelihood ratio
   as the test statistic.  Neyman-Pearson lemma says
   LLR is the uniformly most powerful test statistic, although
   the Neyman-Pearson one fits for the parameter of
   interest, not just the nuisance parameters, making the
   null hypothesis a subset of the test hypothesis

Glen’s LLR also fits for s (actually r×s)
in the numerator, while r = 0 in the denominator
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Mini-Review: CLs Limits

•  Advantages:  
• Exclusion and Discovery p-values are consistent.
   Example -- a 2σ upward fluctuation of the data
   with respect to the background prediciton appears
   both in the limit and the p-value as such
•  Does not exclude where there is no sensitivity
  (big enough search region with small enough resolution
   and you get a 5% dusting of random exclusions with
    CLs+b)

p-values:
Yellow area = 1-CLb = 1-P(-2lnQ>-2lnQobs| b only)
Green area = CLs+b = P(-2lnQ>-2lnQobs | s+b)

CLs ≡ CLs+b/CLb ≥ CLs+b
Exclude if CLs<0.05
Vary r until CLs=0.05 to get rlim
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Tevatron Higgs Combination Cross-Checked Two Ways

Very similar results --
•  Comparable exclusion regions
•  Same pattern of excess/deficit 
   relative to expectation

n.b.  Using CLs+b limits instead of
CLs or Bayesian limits would extend the
bottom of the  yellow band to zero in the 
above plot, and the observed limit
would fluctuate accordingly.  We’d have
to explain the 5% of mH values we randomly
excluded without sufficient sensitivity.

r lim
 =
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Practical Suggestions for Combination
   At LEP and at the Tevatron, we exchanged histograms
   of observed and predicted events.  
Many advantages:

•  Crosscheck analyzers’ work:
     Signal and background checksum
     Limit/discovery recalculations
     check for “broken” bins

•   s>0 when b=0 
•   any observation or prediction <0

•  Can make control plots
•  Can try a great variety of statistical treatments 
      -- Profile Likelihood, Bayesian, CLs and compare each one
•  Can make expected limits/LLR distributions without approximations
•  Can draw the ±1σ, ±2σ bands on expected limits with MC
•  Can point to excesses and deficits to explain why limits and p-values are as they are
•  Can accommodate new cross sections and branching ratios by scaling
• Can pick and choose signals if more than one expected
   (e.g., do 4th gen analysis with H→WW without WH,
    ZH and VBF)
• Pre-binned histograms mean combiners don’t have to
   choose binning, reducing mistakes, inconsistencies
• possibly less work for the analyzer

Disadvantages:
•  Lots of work/CPU!
•  Have to share
   preliminary histos
   (your competitors may
    find your mistakes!)
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 Systematic uncertainties itemized by named source

•  Asymmetric Rate errors on each predicted component

•  Shape errors supplied as alternate shape histograms 
      Bin-by-bin ratios are inconvenient  -- example mjj histogram
      where the variation is “horizontal” and not vertical. 
      Need shape interpolators/extrapolators to use them.
      Typically ±1σ shape variations are explored one source
      at a time by analyzers.  Analyzers will ask combiners to
      extrapolate out to arbitrary ±nσ shapes (!)
      -- practical difficulty:  How to estimate 5σ systematics?

•  Bin-by-bin independent uncertainties (MC statistics)

•  Names used to categorize correlations in a way easy to
   understand and check

•  Give names to exchanged template histograms please!

Practical Suggestions for Combination
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Discovery with p-Values
Example:  CDF single top.
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100 M s+b and b-only 
pseudoexperiments, 
each with fluctuated nuisance
parameters, and fit twice.

5σ: p-value of 2.77x10-7 or
    less.
3σ: p-value of 1.35x10-3 or
    less
2σ: p-value of 2.28% or less

Buzzword: “Prior Predictive ensemble”
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Fitting and Fluctuating
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• Monte Carlo pseudoexperiments
    are used to get p-values.
• Test statistic -2lnQ is not uncertain 
     for the data.
• Distribution from which -2lnQ is
   drawn is uncertain!

•  Nuisance parameter fits in numerator and denominator of -2lnQ do not incorporate
    systematics into the result.
    Example -- 1-bin search; all test statistics are equivalent to the event count, fit or no fit.
•  Instead, we fluctuate the probabilities of getting each outcome since those are 
   what we do not know.  Each pseudoexperiment gets random values of nuisance parameters.
•  Can also try values of nuisance parameters that maximize the p-value, but that’s very
   conservative (called the supremum p-value, still needs choices of parameter ranges).
•  Why fit at all?  It’s an optimization.  Fitting reduces sensitivity to the uncertain true
   values and the fluctuated values.  For stability and speed, you
   can choose to fit a subset of nuisance parameters (the ones that are constrained 
   by the data).  Or do constrained or unconstrained fits, it’s your choice.
• If not using pseudoexperiments but using Wilk’s theorem, then
  the fits are important for correctness, not just optimality.
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Another Avenue towards using Bayesian 
Techniques for Discovery
•  D0 measures the single top cross section with a Bayesian technique
•  The measured cross section is used as a test statistic for the p-value 
   for significance.  Pseudoexperiments fluctuate systematics.

C. Gerber,
D0 single Top
Fermilab seminar
March 10, 2009



T. Junk, W. Fisher, Tevatron Higgs Exclusion and Discovery 17

The Trials Factor
•  Also called the “Look Elsewhere Effect”
•  Bump-hunters are familiar with it.

What is the probability of an upward fluctuation as big as the
one I saw anywhere in my histogram?

-- Lots of bins → Lots of chances at a false discovery
-- Approximation:  Multiply smallest p-value by the number of 
  “independent” models sought (not histogram bins!).
   Bump hunters:  roughly (histogram width)/(mass resolution)
   Criticisms:
      Adjusted p-value can now exceed unity!
      What if histogram bins are empty?
      What if we seek things that have been ruled out already?
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The Trials Factor
More seriously, what to do if the p-value comes from
a big combination of many channels each optimized at each
mH sought?  
•  Channels have different resolutions (or is resolution even
    the right word for a multivariate discriminant?
•  Channels vary their weight in the combination as 
   cross sections and branching ratios change with mH

Proper treatment -- want a p-value of p-values!  
(use the p-value as a test statistic)
Run pseudoexperiments and analyze each one at 
each mH studied.  Look for the distribution of smallest p-values.

Next to impossible unless somehow analyzers supply
how each pseudo-dataset looks at each test mass.
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What does a signal with mH=m1 look like when seeking mH=m2?
So far, not done at Tevatron.  Not needed to study the trials factor,
but needed to make this plot:

Look-Aside Histograms
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Individual Candidates Can Make a Big Difference

if s/b is high enough
near each one.

Fine mass grid --
smooth interpolation
of predictions --
some analysis
switchovers at
different mH for
optimization purposes

At LEP -- can follow individual candidates’ interpretations
   as functions of test mass
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Even at a Hadron Collider, High s/b is possible!

Example -- CDF single
top observation

Low s/b, high rate bins
in the same histogram

Example -- CDF’s trilepton WZ
measurement

Another issue -- each bin contains
predictions using weighted MC --
and events have a broad spectrum
of weights.
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A Pitfall -- Not Enough MC (data) To Make
Adequate Predictions

Cousins, Tucker and 
Linnemann tell us prior 
predictive p-values 
undercover with 0±0 
events are predicted 
in a control sample.

CTL Propose a flat prior in
true rate, use joint LF
in control and signal
samples.  Problem is, the
mean expected event rate
in the control sample is
nobs+1 in control sample.
Fine binning → bias in
background prediction.

Overcovers for discovery,
undercovers for limits?

An Extreme Example (names removed)
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Measurement and Discovery are Very Different
Buzzwords:
•  Measurement = “Point Estimation”
•  Discovery = “Hypothesis Testing”

You can have a discovery and a poor measurement!
Example:  Expected b=2x10-7 events, expected signal=1
  event, observe 1 event, no systematics.

   p-value ~2x10-7 is a discovery!  (hard to explain that event
   with just the background model).  But have  ±100%
   uncertainty on the measured cross section!

   In a one-bin search, all test statistics are equivalent.  But 
   add in a second bin, and the measured cross section becomes
  a poorer test statistic than the ratio of profile likelihoods.

In all practicality, discriminant distributions have a wide
spectrum of s/b, even in the same histogram.  But some good
bins with b<1 event
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MC Statistics and “Broken” Bins

• Limit calculators cannot tell if the background expectation
is really zero or just a downward MC fluctuation.
•  Real background estimations are sums of predictions with
   very different weights in each MC event (or data event)
•  Rebinning or just collecting the last few bins together often helps.

•  Advice:  Make your own visible underflow and overflow bins
  (do not rely on ROOT’s underflow/overflow bins -- they are usually
not plotted. Limit calculators should ignore ROOT’s u/o bins).

NDOF=?
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Sociological Issues

•  Discovery is conventionally 5σ.  In a Gaussian asymptotic
  case, that would correspond to a ±20% measurement.

•  Less precise measurements are called “measurements”
   all the time

•  We are used to measuring undiscovered particles and
   processes.  In the case of a background-dominated search,
   it can take years to climb up the sensitivity curve and
   get an observation, while evidence, measurements, etc.
   proceed.

•  Referees can be confused.


