Some questions and (provocative ;-) comments to start the discussion

Jaco Konigsberg, Terry Wyatt.

- Which Tevatron analyses MUST we repeat and which are not absolutely essential?
- How should we publish?
- (How) should we archive the data?
- Some more specific questions

Which analyses MUST we repeat and which are not absolutely essential?

- Obviously, Higgs search, m_w, top properties
 - Is m_t worth further effort?
- Need many measurements of γ/W/Z production (+jets) (+b/c jets)
 - fully corrected for acceptance and unfolded for resolution
 - Really should try to tie down MC at 2 TeV
 - to:
 - reduce scope for tuning
 - increase believability of predictions
 - at 14 TeV
 - NOT enough to fudge detector-level W+jets to fit the "background" in your Higgs search

Which analyses MUST we repeat and which are not absolutely essential?

PDFs

- How important are
 - High E_T jets, W asymmetry, Z rapidity?
 - E.g. Z rapidity is VERY difficult
 - Can we help motivate this work by repeating current PDF fit with current error bars reduced by factor ~4?
- Translation from
 - Expt measurements <--> PDF eigenvector sets <--> physical parameters
- for experimentalists would be very useful
- LHC Z rapidity -> 1 MeV W mass uncertainty?

Which analyses MUST we repeat and which are not absolutely essential?

- Searches for new physics
 - Are we done?
 - No! Relevant way to express sensitivity is σ .Br NOT as limit on:
 - $\ \mathsf{M}_{your_favorite_specific_new_particle_in_your_specific_favorite_model}$
 - But many NP chasers have already left for the LHC
 - Minimum to do:
 - Generic "model independent" searches covering all conceivable final states
 - Data-SM comparisons in the main final states
 - (maybe as by products of other analyses, e.g., SM Higgs)
 - Sorry, but we may not necessarily get around to publishing limits on
 - $-M_{your_favorite_specific_new_particle_in_your_specific_favorite_model}$

How should we publish?

- Keep as close as possible to the direct experimentally measured quantities
 - try to minimize application of "physics" corrections
 - (e.g., radiative corrections, extrapolation to full geometrical acceptance, etc)
 - Don't second guess posterity!
 - E.g., CDF W asymmetry
 - Nice trick, but should publish the electron asymmetry too!
 - We can go back and redo now -- even in 3 years time this may be almost impossible
- Legacy papers must be PRD not PRL!

(How) should we archive the data?

- Very difficult to go back and re-analyze old data!
 - so emphasis should be on publishing measurements properly in the first place!
- But we can't think of all possibilities
 - let alone publish corrected distributions
- E.g., "Unexpected" discovery at the LHC
 - Need to have some capability to go back to the data
 - and SM MC + data-derived background
 - QUAERO-type detector simulation?

A few more questions

- IR-safe jet algorithms
 - A LOT of work for CDF/DØ to change jet algorithm
 - Redo JES, b-tagging, background estimates, etc
 - Is it just too late?
 - Can you convince us it is really worth it?
- Single top?
 - Should do a precision blind analysis as reality check for low mass Higgs search
 - Can we distinguish s and t mechanisms
 - (very difficult at LHC)

A few more questions

- Will the turn on of the LHC kill the Tevatron?
 - Tevatron expts have a clear run at the 2011 data
 - for everything except for very high mass searches and some areas of B physics (LHCb)

- Very useful meeting
 - Lots of very interesting presentations and (maybe even more important) discussions
 - VERY well organized! THANKS!!!
- But the real value is in the quality of the FOLLOW UP
 - so let's follow up on some of these questions!