- What is the origin of neutrino masses?
- Is it possible to uncover the neutrino mass generation mechanism from low energy data?
- Is neutrino mass generated at a low or an high scale?

In the context of GUT scale seesaw:

- Flavor symmetry explaining quarks and leptons at same time?
- Are flavor symmetries with a GUT compatible? In which context?
- Which are interesting symmetries? ($G \rtimes Z_3$ with G abelian)
- How is the flavor symmetry broken?
- Flavon potential (VEV alignment, Are hierarchies possible?)

Lepton Flavor Symmetries - GUT Scale Seesaw

Type I Seesaw mechanism $m_{\nu} \approx -m_D M_{NN}^{-1} m_D^T$ enables

- to have a different flavor structure
- But in SO(10): $m_D \sim m_u \Rightarrow$ Quadratic hierarchy in neutrino masses
- Cancellation of hierarchies needed in neutrino mass matrix

attempts to combine GUT and discrete flavor symmetry:

- King, Malinsky (2006): 5d SO(10), matter fields localized on PS brane \rightarrow LH and RH fields do not transform in the same way
- Altarelli, Feruglio, Hagedorn (2008): $SU(5) \rightarrow m_D \nsim m_u$ due to different origin
- Morisi, Picariello, Torrente-Lujan, Bazzocchi, Frigerio (2008): matter in (16,3), contribution to m_{ν} from type I and type II seesaw, type I seesaw contribution alone difficult
- Hagedorn, Schmidt, Smirnov (2009): additional SO(10) singlets, double seesaw mechanism, cancellation by symmetry
- Bazzocchi, de Medeiros Varzielas (2009): additional SO(10) singlets, cancellation of hierarchy by VEV alignment

Setup within SO(10)

Field
$$\underline{16}_i$$
 S_i H Δ χ_i $SO(10)$ $\underline{16}$ $\underline{1}$ $\underline{10}$ $\overline{16}$ $\underline{1}$

Setup within SO(10)

$$\frac{\alpha_{ij}}{\Lambda} \underline{\mathbf{16}}_{i} \ \underline{\mathbf{16}}_{j} \ \mathcal{H}\chi^{(\star)} + \frac{\beta_{ij}}{\Lambda} \underline{\mathbf{16}}_{i} \ \Delta \ S_{j}\chi + (M_{SS})_{ij} \ S_{i}S_{j} ,$$
$$\mathcal{M} = \begin{pmatrix} 0 \ \alpha \langle \mathcal{H} \rangle \frac{\langle \chi \rangle}{\Lambda} & \beta \langle \Delta \rangle_{\nu} \frac{\langle \chi \rangle}{\Lambda} \\ . \ 0 \ \beta \langle \Delta \rangle_{N} \frac{\langle \chi \rangle}{\Lambda} \\ . \ . \ M_{SS} \end{pmatrix} \Rightarrow m_{\nu}^{DS} \approx m_{D} M_{NS}^{-1} \ \mathcal{M}_{SS} M_{NS}^{-1} m_{D}^{T}$$

Which flavor symmetry?

- Explain number of generations: $\underline{16}_i \sim \underline{3}$
- Explain difference in CKM and MNS matrix (in lowest order)
- Complex $\underline{3} \Rightarrow A_4$ not possible, but: T_7 [Luhn,Nasri,Ramond], $\Sigma(81)$ [Ma], ...

Mass Matrices

$$m_{D} = \frac{\alpha \langle \mathbf{H} \rangle}{\Lambda} \begin{pmatrix} \langle \chi_{1} \rangle^{*} & 0 & 0 \\ 0 & \langle \chi_{2} \rangle^{*} & 0 \\ 0 & 0 & \langle \chi_{3} \rangle^{*} \end{pmatrix}$$
$$M_{NS} = \frac{\langle \Delta \rangle_{N}}{\Lambda} \begin{pmatrix} \langle \chi_{1} \rangle & 0 & 0 \\ 0 & \langle \chi_{2} \rangle & 0 \\ 0 & 0 & \langle \chi_{3} \rangle \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \end{pmatrix} \begin{pmatrix} \beta_{1} & 0 & 0 \\ 0 & \beta_{2} & 0 \\ 0 & 0 & \beta_{3} \end{pmatrix}$$
$$M_{SS} = \begin{pmatrix} A & 0 & 0 \\ \cdot & 0 & B \\ \cdot & \cdot & 0 \end{pmatrix}$$

Some Lessons

- Large top suggests that it has a different origin
- Scenarios with type I seesaw is strongly constrained due to $m_u \sim m_D$ \rightarrow relation between m_D and M_{NN} needed to cancel hierarchy (additional singlets or VEV alignment)
- Simple picture (all matter from 16) is not so easy to implement
- VEV alignment is difficult

Some Questions

- Are there other symmetries which implement this type of cancellation?
- Can neutrino mass originate from one source in the GUT context?
- Is there an effect of many singlets besides scaling the effective seesaw scale?
- What is the best way to achieve the required VEV alignment?

Most Promising Insights from Experimental Constraints

Question

What is the most important parameter to be be determined experimentally (in the neutrino sector) to exclude large classes of flavour models?

Strong Indications for a Flavour Symmetry

- (Almost) vanishing θ_{13}
- (Almost) maximal θ_{23}
- Inverted mass hierarchy "requires" explanation by symmetry

What is the required precision?

- Corrections from higher dimensional operators model dependent (but usually at next order in expansion)
- Renormalization group running might give an hint on the size (Size strongly dependent on absolute mass scale)

RG evolution

Strong Normal Hierarchy

 $\tan \beta = 20, \ \delta = \varphi_1 = \varphi_2 = 0$, analytic estimate

- $|0.5 \sin^2 \theta_{23}| \le 0.16$
- small deviations from maximal mixing
- running above see-saw scales
- suppression by phases possible

Current	Beams	T2K+NuMI	JPARC-HK	NuFact-II
0.16	0.1	0.050	0.020	0.055

[P. Huber, M. Lindner, M. Rolinec, T. Schwetz, W. Winter [hep-ph/0403068]]

 θ_{13}

 $aneta=20,\ \delta=arphi_1=0,\ arphi_2=\pi,\ {\sf analytic}\ {\sf estimate}$

- $\sin^2 2\theta_{13} \le 0.16$
- θ₁₃ = 0 at GUT scale only preserved if m₃ = 0
- suppression by phases possible

Current	Beams	D-CHOOZ	T2K+NuMI	JPARC-HK	NuFact-II
0.16	0.061	0.032	0.023	10 ⁻³	6×10^{-5}

[P. Huber, M. Lindner, M. Rolinec, T. Schwetz, W. Winter ('04)]