

Understanding the mechanism of neutrinoless double beta decay at SuperNEMO

Chris Jackson In collaboration with Frank Deppisch NuFlavour Workshop 10/06/09

Neutrinoless Double Beta Decay

- Mass mechanism need not be only or dominant contribution to decay rate.
- Other lepton number violating models include right handed currents, Rparity violating SUSY, extra dimensions...
- Need to identify mechanism:

MANCHESTER

The University of Manchester

- Compare to electron capture rates (Hirsch, Muto, Oda, Klapdor-Kleingrothaus '94)
- Compare to excited state decays (Faessler, Kaminski, Nowak, Raduta, Simkovic '94)
- Compare half lives in different isotopes (Deppisch, Päs '06; Gehman, Elliot '07)
- Use angular and energy distributions of electrons (Doi, Kotani, Nishiura, Takasugi '83; Ali, Borisov, Zhuridov '06)

MANCHESTER

Right Handed CurrentArise in left-right symmetric models (e.g. SO(10)).Image: Mass mechanism mechan

Includes phase space factors and nuclear matrix elements

λ coupling from V+A at hadronic and leptonic vertices.

SuperNEMO Design

The Universit of Mancheste <u>1 module:</u> Planar and modular design: ~ 100 kg of enriched isotopes (20 modules × 5 kg)

Source (40 mg/cm²) 4 x 3 m² ⁸²Se or ¹⁵⁰Nd Tracking : drift chamber ~3000 cells in Geiger mode

Calorimeter: scintillators + PM ~1 000 PM if scint, blocs ~ 100 PM if scint. bars

A next generation experiment currently in R+D. First module construction to start 2010.

MANCHESTER 1824

Reconstructed distributions

Right Handed Current

Acceptance effects due to scattering in foil and poor reconstruction of tracks of small opening angle

Expected Sensitivity

Performed full Geant 4 Monte Carlo simulation of detector including digitisation, track reconstruction and realistic event selection.

- Simulated signal and internal backgrounds ($2\nu\beta\beta$, ^{214}Bi (< 10 μ Bqkg⁻¹), ^{208}Tl (< 2 μ Bqkg⁻¹).
- Calorimeter resolution (7% (FWHM) at 1 MeV). Foil thickness 40mg/cm². Exposure 500 kgyrs.
- Set expected limits at 90% CL using CL_s method.
- Following results are all preliminary.

 $T_{1/2}$ lower for right handed currents as efficiency is lower.

Nuclear matrix elements from Muto, Bender, Klapdor '89. Correction of 2.7 to NME for deformed nucleus of ¹⁵⁰Nd (Simkovic '07).

Discovery

- The University of Manchester
- In case of discovery can use energy and angular information to determine mechanism.
- Angular distribution of electrons given by:

(Ali, Borisov, Zhuridov 2007)

- Define angular asymmetry above and below $\cos\theta=0$.
- Analogously define energy asymmetry above and below $Q_{\beta\beta}/2$.

$$k = 2\left(\frac{N^+ - N^-}{N^{total}}\right)$$

Plots relate measured k to theoretical k (for angular distribution). At $T_{1/2}=10^{26}$ yr can distinguish pure mass mechanism and right handed current at ~2 σ .

At $T_{1/2}=10^{25}$ yr can identify admixture to ~20%.

- Two measurements can define parameters:
 - Light blue ellipse from measured $T_{1/2}$ including theoretical NME errors of 30%. Shown at values of 10^{25} and 10^{26} yrs.
 - k parameter measurement defines band in parameter space (here k=0.3, 25% rhc admixture).
 Statistical errors included. Dark green from energy difference and light green from angle.
- Red region shows 1 σ statistical combination of measurements.

Pure mass mechanism

Pure right handed current

The University of Manchester

Conclusions

- Ονββ can be caused by many new physics mechanisms. Experimental techniques to understand mechanism are important.
- Half life sensitivity to the mass mechanism will be:
 - $T_{1/2} > 1.15 \times 10^{26}$ yr for ⁸²Se
 - $-T_{1/2} > 0.50 \text{ x } 10^{26} \text{ yr for } {}^{150}\text{Nd}$
- Sensitivity to effective neutrino mass and right handed currents (λ) will be:

- m_v < ~70 meV and λ < ~1.2 x 10^{-7}

- In the case of discovery SuperNEMO can identify admixture of right handed current using the electron angular and energy distributions:
 - ~2 σ for pure right handed current at T_{1/2} = 10²⁶ yr
 - ~20% admixture for T_{1/2} = 10²⁵ yr