Nuflavour09 - Coseners House Abingdon, UK

Possible Mechanism for Generating a Very Small Dirac Neutrino Mass

Mirza Satriawan
Physics Department Gadjah Mada University
Bulaksumur, Yogyakarta - Indonesia

Introduction

- NEUTRINO DO HAVE MASS [1]
- Is it a Majorana or a Dirac Particle (or A Mixed of Dirac and Majorana)?
- Why it is very small?

Majority of opinion: neutrino is a Majorana particle.
Majorana neutrino \rightarrow seesaw mechanism \rightarrow very small mass [2]
Could explain Leptogenesis (small $\Delta L=2$) [3]

But

No conclusive evidence from the $0 \nu \beta \beta$ decay [4]
Dirac neutrino can also support Leptogenesis [5]
So why not considering neutrino as a pure Dirac particle

A type-II seesaw-like mechanism

Assuming the existence of three Higgs scalars X, Y, and Z, with their SU(2)-rotated fields, \tilde{X}, \tilde{Y}, and \tilde{Z}.

The gauge group $\mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R} \times \mathrm{U}(1)$
(the coupling $g_{L}=g_{R}=g$ and g^{\prime} respectively)
Using the following Yukawa coupling

$$
\begin{equation*}
-G_{X} \bar{\psi}_{L} X \psi_{R}-G_{\tilde{X}} \bar{\psi}_{L} \tilde{X} \psi_{R}+\text { h.c. } \tag{1}
\end{equation*}
$$

and a coupling among the three Higgs scalar particles

$$
\begin{equation*}
\mu\left(\epsilon_{1} Y X Z+\epsilon_{2} Y \tilde{X} Z\right)+\text { h.c. } \tag{2}
\end{equation*}
$$

where G 's are the Yukawa coupling constant, ϵ 's are some coupling constant, and μ is some constant with a unit of mass. (No representation assign yet to X, Y, and Z, just a symbol to explain the diagram.)

Figure 1: Diagram for a type-II seesaw-like mechanism

Possible Reps. assignment for X, Y, Z

1. The case where e_{R}, ν_{R} are singlets. Then X belongs to $(2,1,1)$, a doublet of $\mathrm{SU}(2)_{L}$. The Y and Z have two possibilities
(a) Y will be a doublet of $\operatorname{SU}(2)_{L}(2,1,1)$ and Z will be a singlet (or vise versa).
(b) Y will be a doublet of $\operatorname{SU}(2)_{R}(1,2,1)$ and Z belongs to $(2,2,0)$ is a bidoublet (or vise versa).
2. The case where e_{R}, ν_{R} form a doublet of $\operatorname{SU}(2)_{R}(1,2,-1)$. The X has to be a bidoublet $(2,2,0)$. The Y and Z will be doublet of $\mathrm{SU}(2)_{R}(1,2,-1)$ and $\mathrm{SU}(2)_{L}(2,1,-1)$ respectively.

Case 1.a

The Higgs field contents of X and Y

$$
\begin{equation*}
X=\binom{X^{+}}{X^{0}}_{L} ; \quad Y=\binom{Y^{0}}{Y^{-}}_{L} \tag{3}
\end{equation*}
$$

The relevant Yukawa coupling for the neutrino and the charged lepton

$$
\begin{align*}
& -G_{\nu} \bar{\nu}_{L} X^{0 *} \nu_{R}+\text { h.c } \tag{4}\\
& -G_{e} \bar{e}_{L} X^{0} e_{R}+\text { h.c } \tag{5}
\end{align*}
$$

The relevant three Higgs coupling

$$
\begin{equation*}
\mu \epsilon_{1} Y^{0 *} X^{0} Z+\mu \epsilon_{2} Y^{0 *} X^{0 *} Z+\text { h.c. } \tag{6}
\end{equation*}
$$

upon integrating out X, we will have the following effective Lagrangian

$$
\begin{equation*}
\mu \frac{Y^{0 *} Z}{M_{X}^{2}}\left(\left(G_{e} \epsilon_{1}+G_{e} \epsilon_{2}\right) \bar{e}_{L} e_{R}+\mu\left(G_{\nu} \epsilon_{1}+G_{\nu} \epsilon_{2}\right) \nu_{L} \nu_{R}\right)+\text { h.c. } \tag{7}
\end{equation*}
$$

where M_{X} is the mass of the heavy X. When Y, Z acquired VEV, denoted by y and z respectively, we will have masses for the lepton

$$
\begin{align*}
m_{\nu} & =\mu G_{\nu}\left(\epsilon_{1}+\epsilon_{2}\right) \frac{y z}{M_{X}^{2}} \tag{8}\\
m_{e} & =\mu G_{e}\left(\epsilon_{1}+\epsilon_{2}\right) \frac{y z}{M_{X}^{2}} \tag{9}
\end{align*}
$$

To have a small neutrino mass compared to the charged lepton mass we have to have $G_{e} \gg G_{\nu}$. In this case we cannot break the parity unless we add additional left and right Higgs doublets with different VEV.

Case 1.b

The Higgs field contents of X, Y and Z

$$
\begin{gather*}
X=\binom{X^{+}}{X^{0}}_{L} ; \quad Y=\binom{Y^{+}}{Y^{0}}_{R} \tag{10}\\
Z=\left(\begin{array}{cc}
Z_{1}^{0} & Z_{1}^{+} \\
Z_{2}^{-} & Z_{2}^{0}
\end{array}\right) . \tag{11}
\end{gather*}
$$

The relevant Yukawa coupling for the neutrino and the charged lepton

$$
\begin{equation*}
-G_{\nu} \bar{\nu}_{L} X^{0 *} \nu_{R}-G_{e} \bar{e}_{L} X^{0} e_{R}+\text { h.c } \tag{12}
\end{equation*}
$$

The relevant three Higgs coupling

$$
\begin{equation*}
\mu \epsilon_{1} X^{0 *} Z_{2}^{0} Y^{0}+\mu \epsilon_{2} X^{0 *} Z_{1}^{0 *} Y^{0}+\text { h.c. } \tag{13}
\end{equation*}
$$

upon integrating out the X, we will have the following effective Lagrangian

$$
\begin{equation*}
\mu\left(\epsilon_{1} \frac{Y^{0 *} Z_{2}^{0}}{M_{X}^{2}}+\epsilon_{2} \frac{Y^{0 *} Z_{1}^{* 0}}{M_{X}^{2}}\right)\left(G_{e} \bar{e}_{L} e_{R}+G_{\nu} \nu_{L} \nu_{R}\right)+\text { h.c. } \tag{14}
\end{equation*}
$$

where M_{X} is the mass of the heavy X. When Y, Z acquired VEV, assuming that VEV of $<Z_{1}>\approx<Z_{2}>\approx z$, and the VEV of Y denoted by y, we will have masses for the lepton

$$
\begin{align*}
m_{\nu} & \approx \mu G_{\nu}\left(\epsilon_{1}+\epsilon_{2}\right) \frac{y z}{M_{X}^{2}} \tag{15}\\
m_{e} & \approx \mu G_{e}\left(\epsilon_{1}+\epsilon_{2}\right) \frac{y z}{M_{X}^{2}} \tag{16}
\end{align*}
$$

Again to have a small neutrino mass compared to the charged lepton mass we have to have $G_{e} \gg G_{\nu}$.

But unlike case 1.a, here we already have two doublet with different VEV. Because the VEV of X is small, the weak gauge bosons obtained
masses from the Y and Z. The mass of the weak gauge bosons (in the matrix form)

$$
\begin{gather*}
W_{L}^{+} \tag{17}\\
W_{L}^{-}\left(\begin{array}{cc}
\frac{1}{2} g^{2} z^{2} & -\frac{1}{2} g^{2} z^{2} \\
W_{R}^{-} \\
-\frac{1}{2} g^{2} z^{2} & \frac{1}{4} g^{2}\left(2 z^{2}+y^{2}\right)
\end{array}\right),
\end{gather*}
$$

with the eigenvalues (with $y \gg z$)

$$
\begin{equation*}
M_{W_{1}}^{2} \approx g^{2}\left(\frac{1}{2} z^{2}+\frac{1}{4} y^{2}\right) \quad M_{W_{2}}^{2} \approx g^{2}\left(\frac{1}{2} z^{2}-\frac{z^{4}}{y^{2}}\right) \tag{18}
\end{equation*}
$$

Thus we have a very massive right charged weak bosons $W_{R}^{ \pm}$and a less massive left charged weak bosons $W_{R}^{ \pm}$with a small mixing.

For the neutral gauge bosons,

$$
\begin{align*}
& \tag{19}\\
& W_{3 L} \\
& W_{3 R} \\
& W_{3 R} \\
& B
\end{align*}\left(\begin{array}{ccc}
\frac{1}{2} g^{2} z^{2} & -\frac{1}{2} g^{2} z^{2} & B \\
-\frac{1}{2} g^{2} z^{2} & \frac{1}{4} g^{2}\left(2 z^{2}+y^{2}\right) & -\frac{1}{4} g g^{\prime} y^{2} \\
0 & -\frac{1}{4} g g^{\prime} y^{2} & \frac{1}{4} g^{\prime 2} y^{2}
\end{array}\right)
$$

with the eigenvalues

$$
\begin{gather*}
M_{Z_{R}}^{2} \approx \frac{1}{2} g^{2} z^{2}+\frac{1}{4}\left(g^{2}+g^{\prime 2}\right) y^{2} \tag{20}\\
M_{Z_{L}}^{2} \approx \frac{1}{2} g^{2} z^{2}-\frac{g^{2}\left(z^{2}-\left(g^{\prime 2} / 2\right)\right) z^{2}}{\left(g^{2}+g^{\prime 2}\right) y^{2}} \tag{21}
\end{gather*}
$$

and one massless boson (foton) $M_{A}=0$.

Case 2

The Higgs field contents of X, Y and Z

$$
\begin{gather*}
X=\left(\begin{array}{cc}
X_{1}^{0} & X_{1}^{+} \\
X_{2}^{-} & X_{2}^{0}
\end{array}\right) \tag{22}\\
Z=\binom{Z^{0}}{Z^{-}}_{L} ; \quad Y=\binom{Y^{0}}{Y^{-}}_{R} .
\end{gather*}
$$

The relevant Yukawa coupling for the neutrino and the charged lepton

$$
\begin{align*}
& -G_{1} \bar{\nu}_{L} X_{1}^{0} \nu_{R}-G_{2} \bar{\nu}_{L} X_{2}^{0 *} \nu_{R}+\text { h.c } \tag{24}\\
& -G_{1} \bar{e}_{L} X_{2}^{0} e_{R}-G_{2} \bar{e}_{L} X_{1}^{0 *} e_{R}+\text { h.c } \tag{25}
\end{align*}
$$

The relevant three Higgs coupling are

$$
\begin{equation*}
\mu \epsilon_{1} Y^{0 *} X_{1}^{0} Z^{0}+\mu \epsilon_{2} Y^{0 *} X_{2}^{0 *} Z^{0}+\text { h.c. } \tag{26}
\end{equation*}
$$

upon integrating out the X, we will have the following effective Lagrangian

$$
\begin{equation*}
\mu\left(\left(\epsilon_{1} G_{1}+\epsilon_{2} G_{2}\right) \bar{\nu}_{L} \nu_{R}+\left(\epsilon_{1} G_{2}+\epsilon_{2} G_{1}\right) \bar{e}_{L} e_{R}\right) \frac{\bar{Y}^{0 *} Z^{0}}{M_{X}^{2}}+\text { h.c. } \tag{27}
\end{equation*}
$$

where M_{X} is the mass of the heavy X. When Y, Z acquired VEV, denoted by y and z respectively, we will have masses for the lepton

$$
\begin{align*}
& m_{\nu} \approx \mu\left(G_{1} \epsilon_{1}+G_{2} \epsilon_{2}\right) \frac{y z}{M_{X}^{2}} \tag{28}\\
& m_{e} \approx \mu\left(G_{1} \epsilon_{2}+G_{2} \epsilon_{1}\right) \frac{y z}{M_{X}^{2}} \tag{29}
\end{align*}
$$

Thus in order to have a small neutrino mass (compared to the charged lepton mass), we can choose ϵ_{1} and G_{2} to be very small compared to ϵ_{2} and G_{1}.

Assuming $\left(\epsilon_{1}, G_{2}\right) \propto 10^{-6},\left(\epsilon_{2}, G_{1}\right) \propto 1, \mu \propto 1 \mathrm{GeV}, y \propto 10^{3} \mathrm{GeV}$, $z \propto 10^{2} \mathrm{GeV}$, and $M_{X} \propto 10^{4} \mathrm{GeV}$, we will have $m_{\nu} \propto 1 \mathrm{eV}$

Regarding the parity breaking, the mass of the weak gauge boson will come from the VEV of y and z. The mass of the weak gauge boson, in the matrix form is given by

$$
\begin{gather*}
W_{L}^{+} \\
W_{L}^{-}\left(\begin{array}{cc}
\frac{1}{4} g^{+} z^{2} & 0 \\
W_{R}^{-} \\
0 & \frac{1}{4} y^{2}
\end{array}\right), \tag{30}
\end{gather*}
$$

There is no mixing (but, actually there is a very small mixing due to a very small VEV of the bidoublet X)

$$
\begin{align*}
& \tag{31}\\
& W_{3 L} \\
& W_{3 R} \\
& B
\end{align*}\left(\begin{array}{ccc}
W_{3 L} & W_{3 R} & B \\
\frac{1}{4} g^{2} z^{2} & 0 & -\frac{1}{4} g g^{\prime} z^{2} \\
0 & \frac{1}{4} g^{2} y^{2} & -\frac{1}{4} g g^{\prime} y^{2} \\
-\frac{1}{4} g g^{\prime} z^{2} & -\frac{1}{4} g g^{\prime} y^{2} & \frac{1}{4} g^{\prime 2}\left(z^{2}+y^{2}\right)
\end{array}\right)
$$

with the eigenvalues

$$
\begin{gather*}
M_{Z_{R}}^{2} \approx \frac{1}{4}\left(g^{2}+g^{\prime 2}\right) y^{2}+\frac{1}{8}\left(g^{2}+g^{\prime 2}\right) z^{2} \tag{32}\\
M_{Z_{L}}^{2} \approx \frac{1}{8}\left(g^{2}+g^{\prime 2}\right) z^{2} \tag{33}
\end{gather*}
$$

and one massless gauge (foton)

$$
\begin{equation*}
M_{A}=0 . \tag{34}
\end{equation*}
$$

menu

Koide Relation

The fact that the mass of the charged lepton above come from a seesaw-like mechanism is interesting, because there is a nice charged lepton relation by Koide long time ago [7]

$$
\begin{equation*}
\frac{m_{e}+m_{\mu}+m_{\tau}}{\left(\sqrt{m_{e}}+\sqrt{m_{\mu}} \sqrt{m_{\tau}}\right)^{2}}=\frac{2}{3} \tag{35}
\end{equation*}
$$

Koide himself suggest that the condition $m_{i} \propto v_{i}^{2}$ is required. This is similar to a seesaw mechanism.

Conclusion

- We can have a (type-II) seesaw mechanism with Dirac neutrino
- There are three possible mechanism for a type II seesaw-like mechanism, and the one with the intermediary field is a bidoublet (case 2) is the better one.
- Seesaw mechanism for charged leptons is supporting the Koide mass relation.

References

[1] SNO Collaboration, Q.R. Ahmad et al., Phys. Rev. Lett. 89, 011301 (2002); C.K. Jung et al., Ann. Rev. Nucl. Part. Sci. 51, 451 (2001); KamLAND Collaboration, K. Eguchi et al., Phys. Rev. Lett. 90, 021802 (2003); K2K Collaboration, M.H. Ahn et al., Phys. Rev. Lett. 90, 041801 (2003).
[2] P. Minkowski, Phys. Lett. B 67, 421 (1977); M. Gell-Mann, P. Ramond and R. Slansky, Proceedings of the Supergravity Stony Brook Workshop, New York 1979, eds. P. Van Nieuwenhuizen and D. Freedman; T. Yanagida, Proceedings of the Workshop on Unified Theories and Baryon Number in the Universe, Tsukuba, Japan 1979, eds. A. Sawada and A. Sugamoto; R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).
[3] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986); P. Langacker, R.D. Peccei, and T. Yanagida, Mod. Phys. Lett. A 1, 541 (1986); M.A. Luty, Phys. Rev. D 45, 455 (1992); R.N. Mohapatra and X. Zhang, Phys. Rev. D 46, 5331 (1992).
[4] HeidelbergMoscow Collaboration: H.V. Klapdor-Kleingrothaus et al., Phys. Rev. D 55, 54 (1997); Phys. Lett. B 407, 219 (1997); Phys. Rev. Lett. 83, 41 (1999); Eur. Phys. J. A 12, 147 (2001); Mod. Phys. Lett. A 16, 2409 (2001).
[5] K. Dick, M. Lindner, M. Ratz, and D.Wright, Phys. Rev. Lett. 84, 4039 (2000); H. Murayama and A. Pierce, Phys. Rev. Lett. 89, 271601 (2002); B. Thomas and M. Toharia, Phys. Rev. D 73, 063512 (2006); D.G. Cerdeno, A. Dedes, and T.E.J. Underwood, JHEP 0609, 067 (2006).
[6] J.C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); R.N. Mohapatra and J.C. Pati, Phys. Rev. D 11, 566 (1975); Phys. Rev. D

11, 2558 (1975); G. Senjanovic and R.N. Mohapatra, Phys. Rev. D 12, 1502 (1975).
[7] Y. Koide, Lett. Nuovo Cimento 34, 201 (1982); Y. Koide, Phys. Rev. D28, 252 (1983); Y. Koide, Mod. Phys. Lett. A5, 2319 (1990).
menu

