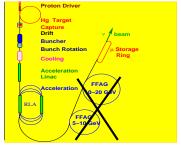
The Low Energy Neutrino Factory

Tracey Li IPPP, Durham University

NuFlavour Workshop Cosener's House, Abingdon 10th June 2009

In collaboration with: Alan Bross, Malcolm Ellis, Enrique Fernandez-Martinez, Steve Geer, Olga Mena and Silvia Pascoli

The Low Energy Neutrino Factory


• The low energy neutrino factory is one candidate for a future neutrino oscillation experiment.

- These experiments are primarily designed to measure:
 - δ (CP violating phase)
 - θ_{13} (third mixing angle)
 - Sign of Δm_{31}^2 (mass hierarchy)

• We are aiming at optimizing the LENF set-up.

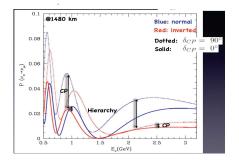
The low energy neutrino factory

- Create an intense source of μ^{\pm} .
- Accelerate them to energies of $E_{\mu} \sim$ 5 GeV.
- Inject into a storage ring where the muons decay: $\mu^{\pm} \rightarrow e^{\pm}\nu_{e}(\bar{\nu}_{e})\bar{\nu}_{\mu}(\nu_{\mu})$
- Detect with a totally active scintillating detector (TASD).
- A TASD can detect e^{\pm} and μ^{\pm} \Rightarrow access to the $(\bar{\nu}^{)}_{\mu} \rightarrow (\bar{\nu}^{)}_{e}$ channel as well as $(\bar{\nu}^{)}_{e} \rightarrow (\bar{\nu}^{)}_{\mu}$ and $(\bar{\nu}^{)}_{\mu} \rightarrow (\bar{\nu}^{)}_{\mu}$.

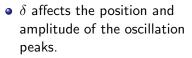
www.cap.bnl.gov

- < ≣ ▶ ---

For the LENF we assume:


- μ^\pm detection efficiency of 73% $< 1~{\rm GeV}$ and 94% $\geq 1~{\rm GeV}$
- e^\pm detection efficiency of 37% $< 1~{\rm GeV}$ and 47% $\geq 1~{\rm GeV}$
- $\bullet\,$ Background of 10^{-3} on the $(\bar{\nu}_{\mu}^{)}$ appearance and disappearance channels
- Background of 10^{-2} on the $(\bar{\nu}_e)$ appearance channel
- Detector fiducial mass of 20 kton
- Energy resolution, dE/E, of 10%
- $1.4\times10^{21}~\mu^+$ and μ^- decays per year
- 10 years running
- L = 1300 km e.g. FNAL to DUSEL.

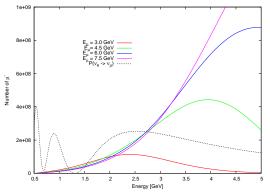
Parameter measurement


 $\bullet\,$ The 'golden channel' is the $\nu_e \rightarrow \nu_\mu$ channel:

[A. Cervera et al, 'Golden measurements at a neutrino factory']

$$\begin{split} P(\nu_e \to \nu_\mu) &= s_{213}^2 s_{23}^2 ((1 + \frac{4EA}{\Delta m_{31}^2}) \sin^2(\frac{\Delta m_{31}^2 L}{4E}) - AL \sin(\frac{\Delta m_{31}^2 L}{4E}) \cos(\frac{\Delta m_{31}^2 L}{4E})) \\ &+ \alpha s_{213} s_{212} s_{223} \frac{\Delta m_{31}^2 L}{4E} ((1 + \frac{2EA}{\Delta m_{31}^2}) \sin(\frac{\Delta m_{31}^2 L}{4E}) - \frac{AL}{2} \cos(\frac{\Delta m_{31}^2 L}{4E})) \cos(\frac{\Delta m_{31}^2 L}{4E} - \delta) \\ &+ \alpha^2 c_{23}^2 s_{212}^2 (\frac{\Delta m_{31}^2 L}{4E})^2 \end{split}$$

[O. Mena]

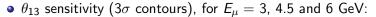


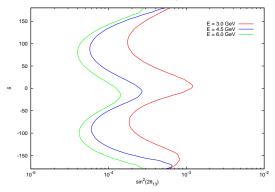
- θ₁₃ controls the amplitude of the oscillation peaks.
- Matter effects amplify the difference between NH and IH.

イロン イヨン イヨン -

Optimizing the muon energy

- Need to maximize the oscillation signal (events \leq 3 GeV), and minimize the non-oscillating (higher energy) background.
- Muon energy spectrum:





• The optimal muon energy is $E_{\mu} \sim$ 4.5 GeV.

< 17 ▶

Effect of E_{μ} on θ_{13} sensitivity

- Significant improvement in increasing E_{μ} from 3 to 4.5 GeV.
- Smaller improvement if E_{μ} is increased further.

< 🗇 🕨

∢ ≣ ≯

The $(\bar{\nu}_e)$ appearance channel

- If the set-up is not optimized, the $(\bar{\nu}_e)$ appearance channel increases sensitivity to θ_{13} , δ and the mass hierarchy (left).
- With optimized E_{μ} , statistics and energy resolution, the additional channel helps only with the hierarchy determination (right).

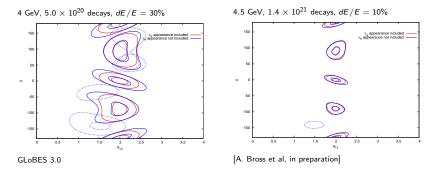
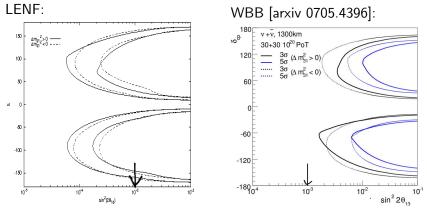
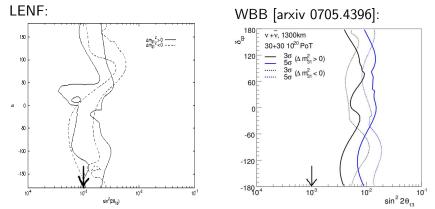



Image: A math a math

Comparison with WBB: CP discovery

Using $E_{\mu} = 4.5$ GeV, dE/E = 10% and $1.4 \times 10^{21} \mu^{\pm}$ decays per year, the LENF is competitive with e.g. a wide-band super-beam:



GLoBES 3.0

The Low Energy Neutrino Factory

A B > A B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Comparison with WBB: hierarchy sensitivity

GLoBES 3.0

The Low Energy Neutrino Factory

A ■

< ∃⇒

- We are optimizing a low energy neutrino factory set-up, to maximise its sensitivity to θ_{13} , δ and the mass hierarchy.
- The following set-up has been simulated: $L = 1300 \text{ km}, E_{\mu} = 4.5 \text{ GeV}, 1.4 \times 10^{21} \mu^{\pm}$ decays per year for 10 years, 20 kton (fiducial) TASD with 10% energy resolution.
- The LENF has excellent sensitivity to θ_{13} (down to $\sin^2(2\theta_{13}) \simeq 10^{-4}$), CP violation (for $\sin^2(2\theta_{13}) \gtrsim 10^{-4}$) and the mass hierarchy(for $\sin^2(2\theta_{13}) \gtrsim 10^{-3}$).

- 4 同 ト 4 臣 ト 4 臣 ト