LHC probe of SUSY $0\nu\beta\beta$ mechanism

10 June 2009 NuFlavour 2009, Abingdon

Steve Chun-Hay Kom Cambridge University

Outline

- $0\nu\beta\beta$ in SUSY with R-parity violation.
- Single slepton production at the LHC.
- Inferring $0\nu\beta\beta$ rate from the LHC.
- Summary.

Mechanisms of $0\nu\beta\beta$

- Majorana mass, right handed currents, KK neutrino exchange ...
- Need to find out the underlying $0\nu\beta\beta$ mechanism.
- We shall focus on $0\nu\beta\beta$ in SUSY with R-parity violation (RPV SUSY) and signals from the LHC

Allanach, CHK, Päs arXiv:0902.4697,0903.0347

$0\nu\beta\beta$ in RPV SUSY

- **Provide an arrow of the set of the set**
- **Direct** $0\nu\beta\beta$ mediation without neutrino mass insertion possible !

Dimension 9 operators: very stringent λ'_{111} bound for low SUSY scale, but relaxes rapidly when SUSY scale increases.

Single slepton production at the LHC

• Can we infer the existence of λ'_{111} at the LHC ? Possible: single selectron production at the LHC.

- Signal: Same sign (SS) di-electron with small p_T .
- Previous analysis on SS di-muon signals for λ'_{211} Dreiner,Richardson,Seymour 99 .
- SS di-electron signal for λ'_{111} believed to be tiny, due to strong $0\nu\beta\beta$ constraint !!

MSSM model

- MSSM models with λ'_{111} defined at SUSY scale, masses defined by mSUGRA parameters.
- Consider only regions with neutralino LSP.
- Lower $T_{1/2}^{0\nu\beta\beta}(^{76}\text{Ge})$ limit: $\lambda'_{111} \lesssim 5 \cdot 10^{-4} (\frac{\Lambda_{SUSY}}{100GeV})^{2.5}$ Single slepton production: $\sigma(pp \to \tilde{l}) \propto |\lambda'_{111}|^2/m_{\tilde{l}}^3$ \to production upper limit increases with Λ_{SUSY}

Results

Infer $T_{1/2}^{0\nu\beta\beta}$ (⁷⁶Ge) from SS di-election 5- σ discovery reach at 10 fb⁻¹:

Comments and summary

- Discussed interplay between $0\nu\beta\beta$ and single slepton production at the LHC in RPV SUSY.
- Observation of single slepton at 5 σ implies that $0\nu\beta\beta$ is within reach of the next generation of experiments.
- Conversely, if $0\nu\beta\beta$ is discovered, expect single slepton production to be able to test the λ'_{111} hypothesis.
- This is with only 10 fb $^{-1}$ of data at the LHC.
- Next : reconstructing mass spectrum and predict $0\nu\beta\beta$ rate including uncertainties...

Thank you.

LHC probe of SUSY 0
uetaeta mechanism – p. 10

Feynman diagrams for direct RPV $0\nu\beta\beta$

 λ'_{111} : squark-gluino, squark-neutralino and slepton-neutraino diagrams, e.g.

Dimension 9 operators: very stringent λ'_{111} bound for low SUSY scale, but relaxes rapidly when SUSY scale increases.

Comparing λ'_{111} **bounds**

Infer $T_{1/2}^{0\nu\beta\beta}$ (⁷⁶Ge) from SS di-election 5- σ discovery reach at 10 fb⁻¹:

LHC SS slepton cuts

From Dreiner, Richardson, Seymour 99

- Lepton $|\eta| < 2.0$.
- Lepton $p_T > 40$ GeV.
- Isolation cut: $E_T < 5$ GeV in cone R=0.4.
- **•** Reject $65 < M_T < 80$ GeV.
- $p_T' < 20 \text{ GeV.}$
- OSSF lepton veto.
- No more than 2 jets, each with $p_T > 50$ GeV.