LFV physics at the TeV scale: R-parity violating Susy

R-parity = discrete symmetry defined as:

$$
R_{P}=(-1)^{3 B+L+2 S}=\left\{\begin{array}{l}
+1 \text { for SM particles } \\
-1 \text { for superpartners }
\end{array}\right.
$$

Introduced in the MSSM in order to avoid fast proton decay from supersymmetric baryon and lepton number violating interactions:

$$
W_{R P V}=\frac{1}{2} \lambda_{i j k} L_{i} L_{j} \bar{e}+\lambda_{i j k}^{\prime} L_{i} Q_{j} \bar{d}_{k}+\frac{1}{2} \lambda_{i j k}^{\prime \prime} \bar{u}_{i} \bar{d}_{j} \bar{d}_{k}+\mu_{i} H_{u} L_{i}
$$

Consequences of R-parity: proton stability; superpartners produced in pairs; stable LSP (dark matter, missing energy signals at colliders)

However, R-parity is not unavoidable: forbidding the λ " couplings is enough to ensure proton stability
\rightarrow scenario where R -parity is violated by the lepton number violating couplings λ and λ^{\prime} only (and possibly also μ_{i})
\rightarrow rich phenomenology at colliders, depending on the size of λ and λ^{\prime} (LSP decays and displaced vertices / RPV sparticle decays, single sparticle production...)
\rightarrow possibility of generating neutrino masses

- tree-level neutrino mass from $\mu_{i-i n d u c e d ~ n e u t r i n o / h i g g s i n o ~ m i x i n g ~}^{\text {in }}$
-1-loop neutrino masses induced by λ and $\lambda^{\prime}\left(\right.$ need $\left.\lambda, \lambda^{\prime} \sim 10^{-4}-10^{-3}\right)$
\rightarrow LFV decays of charged leptons ($l \rightarrow l^{\prime} l^{\prime} l^{\prime \prime}$ at tree level)

$$
\left|\lambda_{321} \lambda_{311}^{*}\right|,\left|\lambda_{i 12}^{*} \lambda_{i 11}\right|<7 \times 10^{-7}\left(\frac{m_{\tilde{\nu}}}{100 \mathrm{GeV}}\right)^{2}
$$

\rightarrow LFV decays of the LSP (from bilinear RPV):

$$
\begin{aligned}
& \tilde{\chi}_{1}^{0} \rightarrow W^{ \pm} l^{\mp}, Z \nu \\
& \tilde{\chi}_{1}^{0} \rightarrow l^{ \pm} q \bar{q}^{\prime}, q \bar{q} \nu, l^{+} l^{-} \nu
\end{aligned}
$$

Neutrino masses from R-parity violation

1) no bilinear R-parity violation ($\mu_{i}=0$ and no bilinear RPV soft terms $B_{i} \epsilon_{i} \tilde{L}_{i} H_{u}$ and $\left.\widetilde{m}_{d i}^{2} H_{d}^{\dagger} \tilde{L}_{i}\right)$

Neutrino masses at one loop, right ballpark for $\lambda, \lambda^{\prime} \sim 10^{-4}-10^{-3}$ but large number of parameters $(9+27)$. Can expand:

$$
\begin{aligned}
& \left.M_{i j}^{\nu}\right|_{\lambda} \simeq \frac{1}{8 \pi^{2}}\left\{\lambda_{i 33} \lambda_{j 33} \frac{m_{\tau}^{2}}{\tilde{m}}+\left(\lambda_{i 23} \lambda_{j 32}+\lambda_{i 32} \lambda_{j 23} \frac{m_{\mu} m_{\tau}}{\tilde{m}}+\lambda_{i 22} \lambda_{j 22} \frac{m_{\mu}^{2}}{\tilde{m}}\right\}+\cdots\right. \\
& \left.M_{i j}^{\nu}\right|_{\lambda^{\prime}} \simeq \frac{3}{8 \pi^{2}}\left\{\lambda_{i 33}^{\prime} \lambda_{j 33}^{\prime} \frac{m_{b}^{2}}{\tilde{m}}+\left(\lambda_{i 23}^{\prime} \lambda_{j 32}^{\prime}+\lambda_{i 32}^{\prime} \lambda_{j 23}^{\prime}\right) \frac{m_{s} m_{b}}{\tilde{m}}+\lambda_{i 22}^{\prime} \lambda_{j 22}^{\prime} \frac{m_{s}^{2}}{\tilde{m}}\right\}+\cdots
\end{aligned}
$$

Enough freedom in the RPV couplings to reproduce the observed neutrino masses and lepton mixing and simultaneously evade the strong bounds from LFV processes

Not really a consistent framework though: trilinear RPV couplings induce bilinear RPV at the quantum level

2) bilinear R-parity violation present

Tree-level neutrino mass from higgsino-neutrino mixing (here $\mathrm{v}_{\mathrm{i}}=0$):

$$
\begin{aligned}
& M_{\text {tree }}^{\nu} \simeq-m M_{\chi}^{-1} m^{T}=-\frac{m_{\nu_{\text {tree }}}}{\sum_{i} \mu_{i}^{2}}\left(\begin{array}{ccc}
\mu_{1}^{2} & \mu_{1} \mu_{2} & \mu_{1} \mu_{3} \\
\mu_{1} \mu_{2} & \mu_{2}^{2} & \mu_{2} \mu_{3} \\
\mu_{1} \mu_{3} & \mu_{2} \mu_{3} & \mu_{3}^{2}
\end{array}\right) \\
& m_{\nu_{\text {tree }}} \simeq \frac{M_{Z}^{2} \cos ^{2} \beta\left(M_{1} c_{W}^{2}+M_{2} s_{W}^{2}\right) \mu \cos \xi}{M_{1} M_{2} \mu \cos \xi-M_{Z}^{2} \sin 2 \beta\left(M_{1} c_{W}^{2}+M_{2} s_{W}^{2}\right)} \tan ^{2} \xi
\end{aligned}
$$

where $\sin ^{2} \xi=\sum_{i} \mu_{i}^{2} / \mu^{2}$, and more generally ξ is the angle between the 4vectors $\left(\mu, \mu_{i}\right)$ and $\left(v_{d}, v_{i}\right) . \xi$ is zero if universal soft terms, or if RPV soft terms satisfy "alignment" conditions

$$
\sin \xi \lesssim 10^{-6} \sqrt{1+\tan ^{2} \beta} \sqrt{m_{\nu_{\text {tree }}} / 0.05 \mathrm{eV}}
$$

A single neutrino massive at tree-level (with flavour composition determined by the μ_{i}). All neutrinos massive at the loop level.

1-loop contributions to the neutrino mass matrix from bilinear and trilinear RPV parameters:

Need 2 RPV vertices or mass insertions. Bilinear RPV parameters can do the job alone [even only bilinear RPV soft terms, see Abada, Losada]

A particulary predictive scenario: bilinear R-parity breaking

 (only $\epsilon_{i} L_{i} H_{u}$ present in W_{RP}, and the corresponding soft terms $B_{i} \epsilon_{i} \tilde{L}_{i} H_{u}$ in the scalar potential)Parameters: $\epsilon_{i}, \Lambda_{i}(i=1,2,3)$
where $B_{i} \rightarrow v_{i} \equiv\left\langle\tilde{\nu}_{i}\right\rangle$ (sneutrino vevs) $\rightarrow \Lambda_{i} \equiv \mu v_{i}+v_{d} \epsilon_{i}$
\Rightarrow neutrino masses generated at tree +1 -loop level, with in particular

$$
\left.\tan ^{2} \theta_{23} \simeq\left(\frac{\Lambda_{2}}{\Lambda_{3}}\right)^{2} \quad \sin ^{2} \theta_{13} \simeq \frac{\left|\Lambda_{1}\right|}{\sqrt{\Lambda_{2}^{2}+\Lambda_{3}^{2}}} \quad \tan ^{2} \theta_{12} \sim \right\rvert\, \frac{\epsilon_{1}}{\epsilon_{2}}
$$

\rightarrow the BR's of the LFV decays of the LSP are correlated with the measured oscillation parameters, e.g. [Mukhopadhyaya, Roy Vissani - Hirsch, Porod, Romao, Valle]

$$
\frac{\operatorname{BR}\left(\tilde{\chi}_{1}^{0} \rightarrow \mu^{ \pm} W^{\mp}\right)}{\operatorname{BR}\left(\tilde{\chi}_{1}^{0} \rightarrow \tau^{ \pm} W^{\mp}\right)} \simeq \frac{\mathrm{BR}\left(\tilde{\chi}_{1}^{0} \rightarrow \mu^{ \pm} \bar{q} q^{\prime}\right)}{\operatorname{BR}\left(\tilde{\chi}_{1}^{0} \rightarrow \tau^{ \pm} \bar{q} q^{\prime}\right)} \simeq \tan ^{2} \theta_{23}
$$

\rightarrow LFV in the charged lepton sector negligible

$$
\operatorname{BR}(\mu \rightarrow e \gamma)<10^{-17} \quad \operatorname{BR}(\tau \rightarrow \mu \gamma, e \gamma)<10^{-16}
$$

Note: neutrino data requires small R-parity violating couplings
\Rightarrow superpartner production and decays as in the MSSM with R-parity; only difference $=$ LSP decay with a potentially measurable decay length, allowing to identify its decay products

Scan over the MSSM parameters: [Hirsch, Porod, Romao,Valle]

$$
L\left(\tilde{\chi}_{1}^{0}\right) \sim(0.01-100) \mathrm{cm}
$$

$\operatorname{BR}\left(\tilde{\chi}_{1}^{0} \rightarrow \mu q^{\prime} \bar{q}\right) / \operatorname{BR}\left(\tilde{\chi}_{1}^{0} \rightarrow \tau q^{\prime} \bar{q}\right)$

$$
\frac{\operatorname{BR}\left(\tilde{\chi}_{1}^{0} \rightarrow \mu^{ \pm} q^{\prime} \bar{q}\right)}{\operatorname{BR}\left(\tilde{\chi}_{1}^{0} \rightarrow \tau^{ \pm} q^{\prime} \bar{q}\right)} \approx \tan ^{2} \theta_{23}
$$

Assume MSSM spectrum known within 10\%: [Hirsch, Porod, Romao,Valle]

$$
\begin{aligned}
\text { Parameters: } & m_{0}=500 \mathrm{GeV}, \quad M_{2}=120 \mathrm{GeV}, \quad \mu=500 \mathrm{GeV} \\
& A_{0}=-500 \mathrm{GeV}, \quad \tan \beta=5
\end{aligned}
$$

Statistical error: $10^{5} \tilde{\chi}_{1}^{0}$

