LFV FROM GUT SEE-SAW MODELS AND FROM TEV SEE-SAW MODELS

SESSION SUMMARY

NUFLAVOUR, JUNE 2009

Model building and model predictions

Graham G. Ross

Ernest Ma

Michael A. Schmidt

A rationale for neutrino flavour parameters

Origin of the neutrino mass: Seesaw at GUT scale or TeV scale

INTERPRETATION OF NEUTRINO FLAVOUR (I)

Flavour mixing "benchmark" scenarios

tri-bi-maximal (HPS) mixing, if persistent ($\theta_{13} << \theta_c$, 0.45 < sin² $\theta_{23} <$ 0.55), calls for a symmetry

* to justify tri-bi-max with a symmetry requires some technicalities, in GUT it is even harder but possible

* arrange a specific VEV alignment in the family symmetry breaking sector

ROSS//

SCHM

* right-handed neutrino sequential dominance // double seesaw to cancel the Yukawa hierarchy

INTERPRETATION OF NEUTRINO FLAVOUR (II)

Precisions required for θ₁₃, δ_{CP}, and the Majorana phases

** the dynamics of family symmetries is controlled up to the size of the expansion parameter < θ_{13}^{CHOOZ}

* high energy values undergo RGE evolution, which may be strong but is computable
SCHMID

ratical impact of the mass hierarchy measurement

ROSS

Theoretical impact of the mass hierarchy measurement

if Katrin sees v mass, hierarchy is not so relevant

ORIGIN OF THE NEUTRINO MASS (I)

- Tests of seesaw in SUSY GUTs
 - Only signature of GUTs in lepton flavour parameters is ... charged lepton mass hierarchy
 - * LFV in GUTs: specific predictions (and close to present bounds) (i) for the mass-insertions δ_{ij} due to the running between M_{Pl} and M_{GUT}(M_{seesaw}); (ii) for the misalignment of softterms in flavour models with familons

Strong dependence on the SUSY breaking pattern: discovery of SUSY at LHC is crucial ROSS

ROSS

ORIGIN OF THE NEUTRINO MASS (II)

Naturalness of TeV scale seesaw

* No serious obstruction, but strong belief that a symmetry (lepton number) is needed, to be broken at the TeV scale

MA

MA

Inverse seesaw: TeV scale is technically natural because of a U(1)_L, possibly gauged; smallness of U(1)_L breaking can be justified as a loop effect

Symmetries to lower the seesaw scale may provide a stable neutral particle as a byproduct: e.g. take Ns and one extra Higgs doublet odd, SM particles even: candidate WIMPs, in the right ballpark

EVEN MORE TEV MODELS ROSS, FOR NEUTRINO MASSES MA

- Dim-5 operator LLHH/M may be absent, dim-7 operator LLHH(H[†]H)/M³ present instead: TeV messangers for 10⁻³ Yukawas
- ^{**} U(1)_{B-L} (or even the full LR symmetry) broken by the RH sneutrino VEV, which is bound to the soft SUSY breaking scale (related talk by KHALIL: radiative B-L breaking)
- ** U(1)' forbidding neutrino Yukawas; SUSY breaking induces "wrong" Higgs Yukawas suppressed by F/M²_{mess} = m_{soft}/M_{mess}: tiny Dirac neutrino masses

Babu, Nandi, Tavartkiladze, 0905.2710

Barger, Fileviez Pérez, Spinner, PRL 102, 181802 (2009)

Demir, Everett, Langacker, PRL 100, 091804 (2008)

ORIGIN OF THE NEUTRINO MASS (III)

- There are well-motivated TeV models to generate neutrino masses, with no fine-tunings
- Is TeV seesaw easier to test? Type I, dealing with gauge singlets only, is hard: suppressed LFV, suppressed non-unitarity effects, suppressed LNV at LHC, barring special textures

Type I with extra gauge interaction, type II, etc... will provide much easier signals, but not obvious to show that they are related to neutrino masses