LFV FROM GUT SEE-SAW MODELS AND FROM TEV SEE-SAW MODELS

DISCUSSION

1. A rationale for neutrino flavour parameters

⇒ Michael A. Schmidt

2. Origin of the neutrino mass: Seesaw or alternatives, GUT or TeV scale

3. Charged LFV in the MEG experiment

À RATIONALE FOR NEUTRINO FLAVOUR (I)

How can flavour mixing be implemented? Is it possible to define some "benchmark" scenarios? If so, which ones?

tri-bi-maximal mixing, if confirmed, calls for a
symmetry

* how hard is to conciliate tri-bi-max and GUT?

Å RATIONALE FOR NEUTRINO FLAVOUR (II)

- Is it possible to come up with plausible arguments for the precisions required for θ₁₃, δ_{CP}, and the Majorana phases?
 - * can theorists "control" the dynamics of family symmetries down to the future experimental precisions?
- What information on the origin of neutrino masses can be obtained from the mass hierarchy measurement?
 - * hard to believe that two (three) quasidegenerate states are accidental

ORIGIN OF THE NEUTRINO MASS (I)

Is it possible to discriminate between GUT and TeV see-saw models?

* Neutrino FV: did we observe the signature of a GUT? will we observe one?

* Charged lepton FV: clear predictions for the mass-insertions δ_{ij} from the running between M_{Pl} and M_{GUT}? between M_{GUT} and M_{seesaw}?

Is LFV mediated by TeV seesaw particles distinguishable from other sources of LFV? nonunitarity effects? direct detection at colliders?

ORIGIN OF THE NEUTRINO MASS (II)

How do these models inscribe into a more general theory?

* complementary observations in other sectors are needed to discriminate among models

Where does the smallness of neutrino masses come from, and does it require fine-tuning anywhere?

* could (should) one use naturalness to prefer a large seesaw scale? is TeV seesaw unexpected?

MANY TEV MODELS FOR NEUTRINO MASSES

Dim-5 operator LLHH/M may be absent, dim-7 operator LLHH(H[†]H)/M³ present instead: TeV messangers for 10⁻³ Yukawas

^{**} U(1)_{B-L} (or even the full LR symmetry) broken by the RH sneutrino VEV, which is bound to the soft SUSY breaking scale

** U(1)' forbidding neutrino Yukawas; SUSY breaking induces "wrong" Higgs Yukawas suppressed by F/M²_{mess} = m_{soft}/M_{mess}: tiny Dirac neutrino masses Babu, Nandi, Tavartkiladze, 0905.2710

Barger, Fileviez Pérez, Spinner, PRL 102, 181802 (2009)

Demir, Everett, Langacker, PRL 100, 091804 (2008)

MEG EXPECTATIONS FOR BR($\mu \rightarrow e\gamma$)

Present bound (MEGA 90%C.L.): 1.2 10-11

 MEG data taking started in September 2008, Summer 2009 bound could be already below 10⁻¹¹: single event sensitivity = (3-5) 10⁻¹²
 ⇒ 90% bound = (7-12) 10⁻¹², if bkg is negligible

* Final goal (3 years): 2 10⁻¹³

MEG INTERPRETATION

* What a negative result would tell us?

- SUSY flavour problem getting worse
- SUSY explanation for $(g-2)_{\mu}$ tenable
- If a signal is found, how to discriminate different models?

* polarized muons + positron angular distribution to measure (A_L² - A_R²)/(A_L²+A_R²); with photon polarization also Im[A_LA_R] ...

*roughly, A_R from GUT thresholds, A_L from seesaw thresholds, could be distinguished