Unrelated mixing and flavour non-conservation

3 families from one in 5+1 dim

Just a reminder: we assume a background scalar field Φ providing a vortex in the 2 extra dimensions; It vanishes at the origin– where we live! For winding number n, we get n 4-dim chiral fermions for each 6-dim fermionic field.

For some reason, n=3 !!!

A summary of (older) work in collaboration with Maxim Libanov, Serguey Troitsky, Emil Nugaev

Field Content

fields		profiles	charges		representations	
			$U(1)_g$	$U(1)_Y$	$SU(2)_W$	$SU(3)_C$
scalar	Φ	$F(r)e^{i\theta}$	+1	0	1	1
		$F(0) = 0, \ F(\infty) = v_{\Phi}$				
scalar	X	X(r)	+1	0	1	1
		$X(0) = v_X, X(\infty) = 0$				
scalar	H	H(r)	-1	+1/2	2	1
		$H(0) = v_H, \ H(\infty) = 0$				
fermion	Q	3 L zero modes	axial $+3/2$	+1/6	2	3
fermion	U	3 R zero modes	axial $-3/2$	+2/3	1	3
fermion	D	3 R zero modes	axial $-3/2$	-1/3	1	3
fermion	L	3 L zero modes	axial $+3/2$	-1/2	2	1
fermion	E	3 R zero modes	axial $-3/2$	-1	1	1

Table 1: Scalars and fermions wi we describe here also the profile functions in extra dimensions.

The 3 fermion modes have different shapes, and different winding properties in the extra dimension variable ϕ

nience,

wave

We get a mass matrix like :

$$\begin{pmatrix}
small & \mathbf{c} & & \\
medium & \mathbf{c} & \\
& large & & 0
\end{pmatrix}$$

An auxiliary scalar X , with winding $e^{i\phi}$ can give the small Cabibbo mixings ϵ

The scheme is very constrained, as the profiles are dictated by the equations, instead of being imposed by hand, like in multilocalisation; Yet, several schemes possible ...

Some developments :

- compactification of the 2 extra dim actually takes place on a sphere instead of a plane

- -avoid localisation problem of gauge bosons
- -little difference for charged modes,
- -avoid multiple light neutrino excitations

Neutrinos :

- -Could be treated the same (DIRAC) way (specially on the sphere) → hierarchical modes,
- -Large angles posssible by favouring diagonal/off diagonal couplings for charged leptons/neutrinos
- -Alternative involves one extra "bulk" field for R neutrinos \rightarrow hierarchical scheme could have one massless neutrino.

« family number » (n) is approximatively conserved ! - $e^{in\phi}$ plays somewhat like a U(1) horizontal symmetry, No FCNC for the lowest KK gauge boson exchange.

All gauge bosons, in particular, Z and Gluons possess 2 types of Kaluza-Klein excitations - radial (approx. flavor conserving, up to ε)

- angular : $Z_{\pm 1}$ behaves like $e^{i\phi}$

 Z_{+1} thus carries « family number »

Flavour violation in the charged sector is fairly independent of the mixing matrix ! Lepton flavour violation not directly linked to neutrino sector

« family number » (n) is approximatively conserved !~ - somewhat like U(1) horizontal symmetry $e^{i\phi}$

Typical limit

 $K_L \rightarrow \mu^- e^+ \text{ or } \mu^+ e^- B.R. < 10^{-12}$

Expect thus typical mass scale $M_{Z1} > (10^{12})^{1/4} M_Z = 100 \text{ TeV}$

In fact, the small overlap of wave functions implies *some suppression of the coupling;* K

→ bound becomes $M(Z_1) > \kappa 100 \text{ TeV}$

 $\mu \rightarrow e \gamma \text{ NOT a favoured process at this order !!}$ $\mu \rightarrow e \nu \nu'$, $\tau^{-} \rightarrow \mu^{-} \mu^{-} e^{+-}$ (or $\mu \nu \nu'$) possible

 $\overline{t} + c$ or $\overline{b} + s$ are similarly produced by the **gluon excitations**, Expect a **few 1000's events** ---- but must consider background!