NuFlavour Workshop Cosener's House June 8-10, 2009

Discussion: Leptogenesis

Enrico Nardi

INFN – Laboratori Nazionali di Frascati, Italy

June 9, 2009

Leptogenesis Cosener's House - June 8-10, 2009 - p. 1

Baryogenesis: how to explain a single experimental number

$$\eta \equiv \frac{n_B - \bar{n}_B}{n_{\gamma}} = (6.21 \pm 0.16) \times 10^{-10},$$
$$Y_{\Delta B} \equiv \frac{n_B - \bar{n}_B}{s} = (8.75 \pm 0.23) \times 10^{-11}$$

[WMAP 5yrs, BAO, SN-IA]

$4.7 \times 10^{-10} \le \eta \le 6.5 \times 10^{-10}, \\ 0.017 \times \le \Omega_B h^2 \le 0.024$

[BBN: Light Elements Aboundances]

Baryogenesis: how to explain a single experimental number

$$\eta \equiv \frac{n_B - \bar{n}_B}{n_{\gamma}} = (6.21 \pm 0.16) \times 10^{-10},$$

$$\chi_{\Delta B} \equiv \frac{n_B - \bar{n}_B}{s} = (8.75 \pm 0.23) \times 10^{-11}$$

[WMAP 5yrs, BAO, SN-IA]

$$4.7 \times 10^{-10} \le \eta \le 6.5 \times 10^{-10}, \\ 0.017 \times \le \Omega_B h^2 \le 0.024$$

[BBN: Light Elements Aboundances]

For testability, one clearly needs general particle physics models that can be related also to other observables.

Leptogenesis: is a class of scenarios where the Universe baryon asymmetry $(Y_{\Delta B})$ is produced from a lepton asymmetry $(Y_{\Delta L})$ generated in the decays of the heavy singlet *seesaw* Majorana neutrinos.

[G.C.Branco& al. NPB617,(2001); S.Davidson, J.Garayoa, F.Palorini, N.Rius PRL99,2007; JHEP0809,2008.] Generically, only under rather unnatural and/or *ad hoc* conditions

[G.C.Branco& al. NPB617,(2001); S.Davidson, J.Garayoa, F.Palorini, N.Rius PRL99,2007; JHEP0809,2008.] Generically, only under rather unnatural and/or *ad hoc* conditions

Casas-Ibarra parameterization for the *N* Yukawa couplings [NPB618 (2001)] $\lambda_{\alpha K} = \frac{1}{v} \left[U^{\dagger} \sqrt{m_{\nu}} \cdot R \sqrt{M_N} \right]_{\alpha K}; \qquad R = \frac{v}{\sqrt{m_{\nu}}} \cdot U^T \cdot \lambda \cdot \frac{1}{\sqrt{M_N}}$

[G.C.Branco& al. NPB617,(2001); S.Davidson, J.Garayoa, F.Palorini, N.Rius PRL99,2007; JHEP0809,2008.] Generically, only under rather unnatural and/or *ad hoc* conditions

Casas-Ibarra parameterization for the N Yukawa couplings [NPB618 (2001)]

$$\lambda_{\alpha K} = \frac{1}{v} \left[U^{\dagger} \sqrt{m_{\nu}} \cdot R \sqrt{M_N} \right]_{\alpha K}; \qquad R = \frac{v}{\sqrt{m_{\nu}}} \cdot U^T \cdot \lambda \cdot \frac{1}{\sqrt{M_N}}$$

The flavor asymmetry ϵ_{α} is prop. to the imaginary part of:

$$\lambda_{\alpha 1}^{*}\lambda_{\alpha K}\left(\lambda^{\dagger}\lambda\right)_{1K} = \frac{M_{1}M_{K}}{v^{4}}\left(\sum_{i}m_{\nu i}R_{i1}^{*}R_{iK}\right)\left(\sum_{i,j}\sqrt{m_{\nu j}m_{\nu i}}R_{j1}^{*}R_{iK}U_{j\alpha}U_{i\alpha}^{*}\right)^{2}$$

The total asymmetry $\epsilon \propto \text{Im:} \quad (\lambda^{\dagger}\lambda)_{1K}^{2} = \frac{M_{1}M_{K}}{v^{4}}\left(\sum_{i}m_{\nu i}R_{i1}^{*}R_{iK}\right)^{2}$

[G.C.Branco& al. NPB617,(2001); S.Davidson, J.Garayoa, F.Palorini, N.Rius PRL99,2007; JHEP0809,2008.] Generically, only under rather unnatural and/or *ad hoc* conditions

Casas-Ibarra parameterization for the N Yukawa couplings [NPB618 (2001)]

$$\lambda_{\alpha K} = \frac{1}{v} \left[U^{\dagger} \sqrt{m_{\nu}} \cdot R \sqrt{M_N} \right]_{\alpha K}; \qquad R = \frac{v}{\sqrt{m_{\nu}}} \cdot U^T \cdot \lambda \cdot \frac{1}{\sqrt{M_N}}$$

The flavor asymmetry ϵ_{α} is prop. to the imaginary part of:

$$\lambda_{\alpha 1}^{*} \lambda_{\alpha K} \left(\lambda^{\dagger} \lambda\right)_{1K} = \frac{M_{1} M_{K}}{v^{4}} \left(\sum_{i} m_{\nu_{i}} R_{i1}^{*} R_{iK}\right) \left(\sum_{i,j} \sqrt{m_{\nu_{j}} m_{\nu_{i}}} R_{j1}^{*} R_{iK} U_{j\alpha} U_{i\alpha}^{*}\right)^{2}$$

The total asymmetry $\epsilon \propto \text{Im:} \quad (\lambda^{\dagger} \lambda)_{1K}^{2} = \frac{M_{1} M_{K}}{v^{4}} \left(\sum_{i} m_{\nu_{i}} R_{i1}^{*} R_{iK}\right)^{2}$

Assuming that R is real
EN,Nir,Roulet,Racker,JHEP0601,20062: ϵ_{α} depends only on the ν -mix-matrix U !
2: $[\epsilon = 0, \text{ but } \epsilon_{\alpha} \neq 0, \text{ and thus } Y_{\Delta B} \neq 0]$

Dedicated studies within this scenario: Branco et al.; Pastore et al.;

If $\mathbb{CP}_L \& \mathbb{Z}$ are observed, is it obvious to believe in leptogenesis?

Prove vs. Disprove vs. Circumstantial evidences for LG

If $CP_L \& L$ are observed, is it obvious to believe in leptogenesis?

Prove vs. Disprove vs. Circumstantial evidences for LG

Direct test of LG: Produce *N*'s and measure the *CP* asymmetry in their decays

$$m_{\nu} \sim \frac{\lambda^2 v^2}{M_N} \sim \left(\frac{\lambda}{10^{-6}}\right)^2 \left(\frac{1 \,\mathrm{TeV}}{M_N}\right) \sqrt{\Delta m_{atm}^2} \qquad \qquad \text{Impossible!}$$

The best we can hope for are *Circumstantial Evidences for LG*, by proving that (some of) the Sakharov necessary conditions are (likely to be) satisfied.

If $CP_L \& \mathbb{Z}$ are observed, is it obvious to believe in leptogenesis?

Prove vs. Disprove vs. Circumstantial evidences for LG

Direct test of LG: Produce N's and measure the CP asymmetry in their decays

$$m_{\nu} \sim \frac{\lambda^2 v^2}{M_N} \sim \left(\frac{\lambda}{10^{-6}}\right)^2 \left(\frac{1 \,\mathrm{TeV}}{M_N}\right) \sqrt{\Delta m_{atm}^2}$$
 Impossible!

The best we can hope for are *Circumstantial Evidences for LG*, by proving that (some of) the Sakharov necessary conditions are (likely to be) satisfied.

1. <u>*B* violation</u>: At $T \gtrsim \Lambda_{EW}$ EW-Sphalerons violate B + L and connect the *B*-asymmetry and the *L*-asymmetry: $Y_{\Delta L} \sim -2 \times Y_{\Delta B}$

Does this mean that we have (at least in principle) one additional LG observable ?

At $T \gg 1 \text{ GeV}$: Baryogenesis: $\Delta B \Rightarrow \Delta L$, then one expects $\Delta L_e = \Delta L_\mu = \Delta L_\tau$ If $\Delta L_e \neq \Delta L_\mu \neq \Delta L_\tau$, then necessarily $\Delta L \Rightarrow \Delta B$ i.e. Leptogenesis.

If $CP_L \& L$ are observed, is it obvious to believe in leptogenesis?

Prove vs. Disprove vs. Circumstantial evidences for LG

Direct test of LG: Produce N's and measure the CP asymmetry in their decays

$$m_{\nu} \sim \frac{\lambda^2 v^2}{M_N} \sim \left(\frac{\lambda}{10^{-6}}\right)^2 \left(\frac{1 \,\mathrm{TeV}}{M_N}\right) \sqrt{\Delta m_{atm}^2} \qquad \qquad \underline{\mathrm{Impossible}\,!}$$

The best we can hope for are *Circumstantial Evidences for LG*, by proving that (some of) the Sakharov necessary conditions are (likely to be) satisfied.

1. <u>*B* violation</u>: At $T \gtrsim \Lambda_{EW}$ EW-Sphalerons violate B + L and connect the *B*-asymmetry and the *L*-asymmetry: $Y_{\Delta L} \sim -2 \times Y_{\Delta B}$

Does this mean that we have (at least in principle) one additional LG observable ?

At $T \gg 1 \,\text{GeV}$: Baryogenesis: $\Delta B \Rightarrow \Delta L$, then one expects $\Delta L_e = \Delta L_\mu = \Delta L_\tau$ If $\Delta L_e \neq \Delta L_\mu \neq \Delta L_\tau$, then necessarily $\Delta L \Rightarrow \Delta B$ i.e. Leptogenesis.

However, today $T_{\nu} \sim 10^{-4} \,\mathrm{eV} < \Delta m^2_{atm,sol}$ and thus $\Delta L_{\nu_{2,3}}$ have already "evaporated".

2. <u>L</u> violation: Is provided by the Majorana nature of the N's: $\ell_{\alpha}\phi \leftrightarrow N \leftrightarrow \bar{\ell}_{\beta}\bar{\phi}$ (Important: generically, the rates for violation of individual L_{α} differ) Experimentally: we hope to see $0\nu 2\beta$ decays (But only if IH or if ν 's are quasi degenerate) If m_{ν} is measured say $\sim 0.1 \,\mathrm{eV}$ (e.g. from Cosmology) and $0\nu 2\beta$ is not seen ? LG would be strongly disfavoured, if not ruled out completely

- 2. <u>L</u> violation: Is provided by the Majorana nature of the N's: $\ell_{\alpha}\phi \leftrightarrow N \leftrightarrow \bar{\ell}_{\beta}\bar{\phi}$ (Important: generically, the rates for violation of individual L_{α} differ) Experimentally: we hope to see $0\nu 2\beta$ decays (But only if IH or if ν 's are quasi degenerate) If m_{ν} is measured say $\sim 0.1 \,\mathrm{eV}$ (e.g. from Cosmology) and $0\nu 2\beta$ is not seen ? LG would be strongly disfavoured, if not ruled out completely
 - 3. <u>*C* & *CP* violation</u>: From interference between tree and 1-loop amplitudes, due to complex Yukawa couplings $(\lambda_{\alpha k}^* \bar{\ell}_{\alpha} H^* N_k)$.

Necessary condition :
$$\epsilon_{\alpha} = \frac{\Gamma_{\alpha} - \bar{\Gamma}_{\alpha}}{\Gamma_{N}} \neq 0$$
 (but $\epsilon \equiv \sum_{\alpha} \epsilon_{\alpha} \neq 0$ is not necessary)

Experimentally, we hope to see CP_L (e.g. with ν SuperBeams – Dirac phase only).

 \mathcal{CP}_L is observed: Circumstantial evidence for LG (and by no means a final proof) \mathcal{CP}_L is not observed: LG is not disproved: Small δ phase, small θ_{13} , etc... 4. Out of equilibrium dynamics: Is provided by the Universe expansion H.

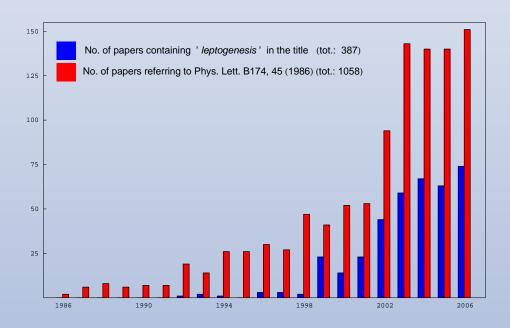
$$\left[\Gamma_{N_1} \sim H\right]_{T=M_{N_1}} \times \frac{8\pi v^2}{M_{N_1}^2} \quad \Rightarrow \qquad \frac{(\lambda^{\dagger}\lambda)_{11}}{M_{N_1}} v^2 \equiv \widetilde{m}_1 \sim m_* \simeq 10^{-3} \,\mathrm{eV}$$

Condition 4. is (optimally) satisfied for $\widetilde{m}_1 \sim \sqrt{\Delta m_{\odot}^2} - \sqrt{\Delta m_{atm}^2}$ ($\widetilde{m}_1 > m_{\nu_1}$ always)

4. Out of equilibrium dynamics: Is provided by the Universe expansion H.

$$\left[\Gamma_{N_1} \sim H\right]_{T=M_{N_1}} \times \frac{8\pi v^2}{M_{N_1}^2} \quad \Rightarrow \quad \frac{(\lambda^{\dagger}\lambda)_{11}}{M_{N_1}} v^2 \equiv \widetilde{m}_1 \sim m_* \simeq 10^{-3} \,\mathrm{eV}$$

Condition 4. is (optimally) satisfied for $\widetilde{m}_1 \sim \sqrt{\Delta m_{\odot}^2 - \sqrt{\Delta m_{atm}^2}}$ ($\widetilde{m}_1 > m_{\nu_1}$ always)



Experimental confirmation of $m_{\nu} \neq 0$ and in the correct mass range for LG: \implies burst of papers after Y2K.

Summary: Proving, Disproving, Circumstantial Evidences

- Experimental detection of $0\nu 2\beta$ decays and/or CP_L in the lepton sector will strengthen the case for leptogenesis but will not prove it.
- If a quasi degenerate or IH ν -spectrum is established, failure of revealing $0\nu 2\beta$ -decays will strongly disfavor LG. (In the DH case no $0\nu 2\beta$ signal is expected.)

Summary: Proving, Disproving, Circumstantial Evidences

- Experimental detection of $0\nu 2\beta$ decays and/or CP_L in the lepton sector will strengthen the case for leptogenesis – but will not prove it.
- If a quasi degenerate or IH ν -spectrum is established, failure of revealing $0\nu 2\beta$ -decays will strongly disfavor LG. (In the DH case no $0\nu 2\beta$ signal is expected.)
- Failure of revealing CP_L will not disprove LG. (However, if a sizeable $\theta_{13} \neq 0$ is established, this would pose some questions...)
- Observation of low energy CP_L will not result in any quantitative direct ٠ connection with the LG CP asymmetries

(but will certainly strengthen the case for LG).

Summary: Proving, Disproving, Circumstantial Evidences

- Experimental detection of $0\nu 2\beta$ decays and/or CP_L in the lepton sector will strengthen the case for leptogenesis but will not prove it.
- If a quasi degenerate or IH ν -spectrum is established, failure of revealing $0\nu 2\beta$ -decays will strongly disfavor LG. (In the DH case no $0\nu 2\beta$ signal is expected.)
- Failure of revealing \mathbb{CP}_L will not disprove LG. (However, if a sizeable $\theta_{13} \neq 0$ is established, this would pose some questions....)
- Observation of low energy CP_L will not result in any quantitative direct connection with the LG CP asymmetries (but will certainly strengthen the case for LG).
- Finally, LHC + EDM experiments will be able to establish or falsify EWB. This will indirectly determine the relevance of future LG studies.

Can one get additional informations in the context of LFV?

Can one get additional informations in the context of flavor symmetries?

- Neutrinos: The hierarchy is milder than for charged fermions (the spectrum could be quasi-degenerate)
- Two mixing angles are large and one maybe maximal.
- Are these hints for a non-Abelian flavor symmetry in the ν sector?

Can one get additional informations in the context of LFV?

Can one get additional informations in the context of flavor symmetries?

- Neutrinos: The hierarchy is milder than for charged fermions (the spectrum could be quasi-degenerate)
- Two mixing angles are large and one maybe maximal.
- Are these hints for a non-Abelian flavor symmetry in the ν sector?

Non-Abelian flavor symmetry ↓ Large reduction in the number of parameters (seesaw) ↓ New connections between LE observables and HE quantities ↓

The 'leptogenesists' dream: compute $Y_{\Delta B}$ from measurements of LE observables

[E.E. Jenkins, A.V. Manohar PLB668:210-215,2008: A4 suggests $\epsilon \sim \mathcal{O}(\theta_{13}^2)$]

To simplify: neglect $N_{2,3}$ except for their effects in the loops (*CP* asymmetry)

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1}^* \bar{\ell}_{\alpha} N_1 H_u + h_{\alpha \beta} \bar{\ell}_{\alpha} e_{\beta} H_d + h.c.$$

To simplify: neglect $N_{2,3}$ except for their effects in the loops (*CP* asymmetry)

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1}^* \bar{\ell}_{\alpha} N_1 H_u + h_{\alpha \beta} \bar{\ell}_{\alpha} e_{\beta} H_d + h.c.$$

This can be written in a more simple way by choosing a specific basis

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1}^* \,\overline{\ell}_{\alpha} \, N_1 \, H_u + h_{\alpha} \,\overline{\ell}_{\alpha} \, e_{\alpha} \, H_d -\mathcal{L}_{\text{Yukawa}} = \lambda_1^* \,\overline{\ell}_1 \, N_1 \, H_u + h_{i\alpha} \,\overline{\ell}_i \, e_{\alpha} \, H_d \quad (i=1, \perp_1, \perp_2)$$

To simplify: neglect $N_{2,3}$ except for their effects in the loops (*CP* asymmetry)

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1}^* \bar{\ell}_{\alpha} N_1 H_u + h_{\alpha \beta} \bar{\ell}_{\alpha} e_{\beta} H_d + h.c.$$

This can be written in a more simple way by choosing a specific basis

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1}^* \,\overline{\ell}_{\alpha} \, N_1 \, H_u + h_{\alpha} \,\overline{\ell}_{\alpha} \, e_{\alpha} \, H_d$$
$$-\mathcal{L}_{\text{Yukawa}} = \lambda_1^* \,\overline{\ell}_1 \, N_1 \, H_u + h_{i\alpha} \,\overline{\ell}_i \, e_{\alpha} \, H_d \quad (i=1, \perp_1, \perp_2)$$

Different bases give different results. The approx. solution of the BE for LG:

$$\begin{split} Y_{\Delta B} &\approx 10^{-3} \times \eta_{\ell} \cdot \epsilon_{\ell} & \eta_{\ell} \sim \frac{m_{*}}{\tilde{m}_{\ell}} \text{ (strong washout); } \quad \tilde{m}_{\ell} \propto \lambda_{\ell 1}^{*} \lambda_{\ell 1} \\ Y_{\Delta B} &\approx 10^{-3} \times \begin{cases} \sum \eta_{\alpha} \cdot \epsilon_{\alpha} & \text{flavor regime} \\ \sum \eta_{\alpha} \cdot \sum \epsilon_{\alpha} &\equiv \eta \cdot \epsilon & \text{one flavor approximation} \end{cases} \end{split}$$

Leptogenesis Cosener's House - June 8-10, 2009 - p. 9

To simplify: neglect $N_{2,3}$ except for their effects in the loops (*CP* asymmetry)

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1}^* \bar{\ell}_{\alpha} N_1 H_u + h_{\alpha \beta} \bar{\ell}_{\alpha} e_{\beta} H_d + h.c.$$

This can be written in a more simple way by choosing a specific basis

$$\begin{split} -\mathcal{L}_{\text{Yukawa}} &= \lambda_{\alpha 1}^* \ \bar{\ell}_{\alpha} \ N_1 \ H_u \ + \ h_{\alpha} \ \bar{\ell}_{\alpha} \ e_{\alpha} \ H_d \qquad \qquad \text{when } T \lesssim 10^{12} \, \text{GeV} \\ -\mathcal{L}_{\text{Yukawa}} &= \lambda_1^* \quad \bar{\ell}_1 \ N_1 \ H_u \qquad \qquad \qquad \text{when } T \gtrsim 10^{12} \, \text{GeV} \end{split}$$

Different bases give different results. The approx. solution of the BE for LG:

$$\begin{split} Y_{\Delta B} &\approx 10^{-3} \times \eta_{\ell} \cdot \epsilon_{\ell} & \eta_{\ell} \sim \frac{m_{*}}{\tilde{m}_{\ell}} \text{ (strong washout); } & \tilde{m}_{\ell} \propto \lambda_{\ell 1}^{*} \lambda_{\ell 1} \\ Y_{\Delta B} &\approx 10^{-3} \times \begin{cases} \sum \eta_{\alpha} \cdot \epsilon_{\alpha} & \text{flavor regime} \\ \sum \eta_{\alpha} \cdot \sum \epsilon_{\alpha} &\equiv \eta \cdot \epsilon & \text{one flavor approximation} \end{cases} \end{split}$$

The physical basis is determined dynamically at each T by the *h*-reaction rates.

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_1 \ \bar{N}_1 \,\ell_1 \ H_u + \text{h.c.}$$

 $T \gg 10^{12}$ GeV, no charged lepton Yukawa scattering has occurred yet $(n_f = 1)$

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1} \, \bar{N}_1 \, \ell_{\alpha} \, H_u + h_{\alpha}^* \, \overline{e}_{\alpha} \, \ell_{\alpha} \, H_d + \text{h.c.}$$

 $T \gg 10^{12}$ GeV, no charged lepton Yukawa scattering has occurred yet $(n_f = 1)$ $T < 10^{12}$ GeV, τ -Yukawa scatterings in equilibrium; Basis: $(\ell_{\tau}, \ell_{\perp_{\tau}})$ $(n_f = 2)$

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1} \, \bar{N}_1 \, \ell_{\alpha} \, H_u + h_{\alpha}^* \, \overline{e}_{\alpha} \, \ell_{\alpha} \, H_d + \text{h.c.}$$

 $T \gg 10^{12}$ GeV, no charged lepton Yukawa scattering has occurred yet $(n_f=1)$ $T < 10^{12}$ GeV, τ -Yukawa scatterings in equilibrium; Basis: $(\ell_{\tau}, \ell_{\perp_{\tau}})$ $(n_f=2)$ $T < 10^9$ GeV, μ -Yukawa in equilibrium; Basis: $(\ell_{\tau}, \ell_{\mu}, \ell_e = \ell_{\perp_{\tau\mu}})$ $(n_f=3)$

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1} \, \bar{N}_1 \, \ell_{\alpha} \, H_u + h_{\alpha}^* \, \overline{e}_{\alpha} \, \ell_{\alpha} \, H_d + \text{h.c.}$$

 $T \gg 10^{12} \text{ GeV}$, no charged lepton Yukawa scattering has occurred yet $(n_f = 1)$ $T < 10^{12} \text{ GeV}, \tau$ -Yukawa scatterings in equilibrium; Basis: $(\ell_{\tau}, \ell_{\perp_{\tau}})$ $(n_f = 2)$ $T < 10^9 \text{ GeV}, \mu$ -Yukawa in equilibrium; Basis: $(\ell_{\tau}, \ell_{\mu}, \ell_e = \ell_{\perp_{\tau\mu}})$ $(n_f = 3)$

The ℓ_1 ($\bar{\ell}'_1$) flavor content becomes important: $P_{\alpha} = |\langle \ell_{\alpha} | \ell_1 \rangle|^2 \left(\bar{P}_{\alpha} = |\langle \bar{\ell}_{\alpha} | \bar{\ell}'_1 \rangle|^2 \right)$

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1} \, \bar{N}_1 \, \ell_{\alpha} \, H_u + h_{\alpha}^* \, \overline{e}_{\alpha} \, \ell_{\alpha} \, H_d + \text{h.c.}$$

 $T \gg 10^{12} \text{ GeV}$, no charged lepton Yukawa scattering has occurred yet $(n_f = 1)$ $T < 10^{12} \text{ GeV}$, τ -Yukawa scatterings in equilibrium; Basis: $(\ell_{\tau}, \ell_{\perp_{\tau}})$ $(n_f = 2)$ $T < 10^9 \text{ GeV}$, μ -Yukawa in equilibrium; Basis: $(\ell_{\tau}, \ell_{\mu}, \ell_e = \ell_{\perp_{\tau\mu}})$ $(n_f = 3)$

The ℓ_1 ($\bar{\ell}'_1$) flavor content becomes important: $P_{\alpha} = |\langle \ell_{\alpha} | \ell_1 \rangle|^2 \left(\bar{P}_{\alpha} = |\langle \bar{\ell}_{\alpha} | \bar{\ell}'_1 \rangle|^2 \right)$

- With flavor *CP* asymmetries: $\epsilon_{\alpha} = \frac{\Gamma(N_1 \to \ell_{\alpha} H) \overline{\Gamma}(N_1 \to \overline{\ell}_{\alpha} \overline{H})}{\Gamma_{N_1}} = P_{\alpha} \epsilon$
- and flavor dependent washouts: $\tilde{m}_{\alpha} \sim P_{\alpha} \tilde{m}_{1}$
- the asymmetry is enhanced: $Y_{\Delta L} \propto \sum \frac{m_*}{\tilde{m}_{\alpha}} \epsilon_{\alpha} \approx n_f \left(\frac{m_*}{\tilde{m}_1} \epsilon \right)$

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1} \, \bar{N}_1 \, \ell_{\alpha} \, H_u + h_{\alpha}^* \, \overline{e}_{\alpha} \, \ell_{\alpha} \, H_d + \text{h.c.}$$

 $T \gg 10^{12} \text{ GeV}$, no charged lepton Yukawa scattering has occurred yet $(n_f=1)$ $T < 10^{12} \text{ GeV}$, τ -Yukawa scatterings in equilibrium; Basis: $(\ell_{\tau}, \ell_{\perp_{\tau}})$ $(n_f=2)$ $T < 10^9 \text{ GeV}$, μ -Yukawa in equilibrium; Basis: $(\ell_{\tau}, \ell_{\mu}, \ell_e = \ell_{\perp_{\tau\mu}})$ $(n_f=3)$

The ℓ_1 ($\bar{\ell}'_1$) flavor content becomes important: $P_{\alpha} = |\langle \ell_{\alpha} | \ell_1 \rangle|^2 \left(\bar{P}_{\alpha} = |\langle \bar{\ell}_{\alpha} | \bar{\ell}'_1 \rangle|^2 \right)$

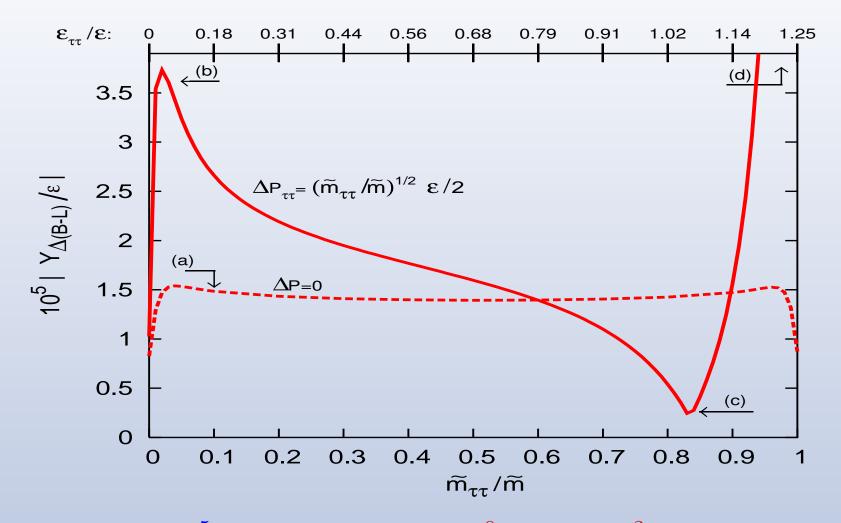
- With flavor *CP* asymmetries: $\epsilon_{\alpha} = \frac{\Gamma(N_1 \to \ell_{\alpha} H) \overline{\Gamma}(N_1 \to \overline{\ell}_{\alpha} \overline{H})}{\Gamma_{N_1}} = P_{\alpha}\epsilon + \frac{\Delta P_{\alpha}}{2}$
- and flavor dependent washouts: $\tilde{m}_{\alpha} \sim P_{\alpha} \tilde{m}_{1}$
- the asymmetry is enhanced: $Y_{\Delta L} \propto \sum \frac{m_*}{\tilde{m}_{\alpha}} \epsilon_{\alpha} \approx n_f \left(\frac{m_*}{\tilde{m}_1}\epsilon\right) + \frac{m_*}{\tilde{m}_1} \sum \frac{\Delta P_{\alpha}}{2P_{\alpha}}$

The most interesting effects are due to the different flavor composition of ℓ_1 , $\overline{\ell}'_1$:

$$CP(\bar{\ell}'_1) \neq \ell_1 \quad \Rightarrow \quad \Delta P_\alpha \equiv P_\alpha - \bar{P}_\alpha \neq 0$$

Leptogenesis Cosener's House - June 8-10, 2009 – p. 10

Two-flavor case: ℓ_{τ} , $\ell_{\perp_{\tau}}$ (10⁹ GeV < T < 10¹² GeV): $|Y_{\Delta(B-L)}|$ versus P_{τ}^{0}



 $|Y_{\Delta(B-L)}|$ (units of $10^{-5}|\epsilon|$) as a function of $P_{\tau}^0 \equiv |\langle \ell_{\tau} | \ell_1 \rangle|^2$ in the 2-flavor regime. <u>Dashed:</u> special case in which $P_{\tau} = \bar{P}_{\tau}$. <u>Solid:</u> typical behavior when $P_{\tau} \neq \bar{P}_{\tau}$. The value of $\epsilon_1^{\tau}/\epsilon_1$ (that can be > 1) is marked on the upper *x*-axis. **Purely Flavored Leptogenesis (** $\epsilon = 0$ **):** SM+seesaw

Casas-Ibarra parameterization for the N Yukawa couplings [NPB618 (2001)]

$$\lambda_{\alpha K} = \frac{1}{v} \left[U^{\dagger} \sqrt{m_{\nu}} \cdot R \sqrt{M_N} \right]_{\alpha K}; \qquad R = \frac{v}{\sqrt{m_{\nu}}} \cdot U^T \cdot \lambda \cdot \frac{1}{\sqrt{M_N}}$$

Purely Flavored Leptogenesis ($\epsilon = 0$ **):** SM+seesaw

Casas-Ibarra parameterization for the N Yukawa couplings [NPB618 (2001)]

$$\lambda_{\alpha K} = \frac{1}{v} \left[U^{\dagger} \sqrt{m_{\nu}} \cdot R \sqrt{M_N} \right]_{\alpha K}; \qquad R = \frac{v}{\sqrt{m_{\nu}}} \cdot U^T \cdot \lambda \cdot \frac{1}{\sqrt{M_N}}$$

The flavor asymmetry ϵ_{α} (leading term) \propto the imaginary part of:

$$\lambda_{\alpha 1}^{*} \lambda_{\alpha K} \left(\lambda^{\dagger} \lambda\right)_{1K} = \frac{M_{1} M_{K}}{v^{4}} \left(\sum_{i} m_{\nu_{i}} R_{i1}^{*} R_{iK}\right) \left(\sum_{i,j} \sqrt{m_{\nu_{j}} m_{\nu_{i}}} R_{j1}^{*} R_{iK} U_{j\alpha} U_{i\alpha}^{*}\right)$$

The total asymmetry $\epsilon \propto \text{Im:} \quad (\lambda^{\dagger} \lambda)_{1K}^{2} = \frac{M_{1} M_{K}}{v^{4}} \left(\sum_{i} m_{\nu_{i}} R_{i1}^{*} R_{iK}\right)^{2}$

Purely Flavored Leptogenesis ($\epsilon = 0$ **):** SM+seesaw

Casas-Ibarra parameterization for the N Yukawa couplings [NPB618 (2001)]

$$\lambda_{\alpha K} = \frac{1}{v} \left[U^{\dagger} \sqrt{m_{\nu}} \cdot R \sqrt{M_N} \right]_{\alpha K}; \qquad R = \frac{v}{\sqrt{m_{\nu}}} \cdot U^T \cdot \lambda \cdot \frac{1}{\sqrt{M_N}}$$

The flavor asymmetry ϵ_{lpha} (leading term) \propto the imaginary part of:

$$\lambda_{\alpha 1}^{*} \lambda_{\alpha K} \left(\lambda^{\dagger} \lambda\right)_{1K} = \frac{M_{1} M_{K}}{v^{4}} \left(\sum_{i} m_{\nu_{i}} R_{i1}^{*} R_{iK}\right) \left(\sum_{i,j} \sqrt{m_{\nu_{j}} m_{\nu_{i}}} R_{j1}^{*} R_{iK} U_{j\alpha} U_{i\alpha}^{*}\right)$$

The total asymmetry $\epsilon \propto \text{Im:} \quad (\lambda^{\dagger} \lambda)_{1K}^{2} = \frac{M_{1} M_{K}}{v^{4}} \left(\sum_{i} m_{\nu_{i}} R_{i1}^{*} R_{iK}\right)^{2}$

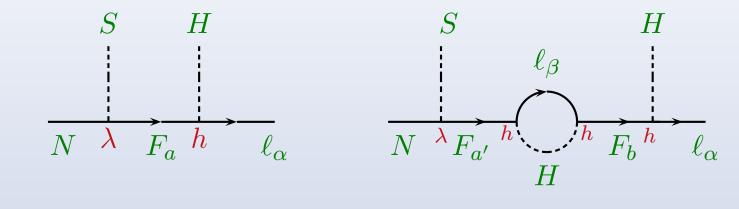
Assuming that R is real
implies surprising results:1: $\epsilon = 0$, but $\epsilon_{\alpha} \neq 0$, and thus $Y_{\Delta B} \neq 0$ 2: ϵ_{α} depends only on the ν -mix-matrix U !

Recent studies of this scenario: Pastore et al.; Branco et al.;

Purely Flavored Leptogenesis: Beyond the SM+seesaw

[D. Aristizabal, M. Losada, EN, PLB659 (2008)]

Assume a $U(1)_F$ (flavor) symmetry that forbids a direct $\overline{\ell}NH$ coupling, and that the flavor symmetry is still unbroken during LG: $\langle S \rangle = 0$.



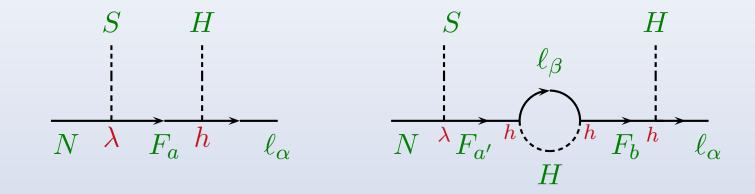
$$\tilde{\lambda}_{\alpha K} = \left(h \frac{\langle S \rangle}{M_F} \lambda^{\dagger}\right)_{\alpha K};$$

 $\epsilon = \sum_{\alpha} \epsilon_{\alpha} = 0$

Purely Flavored Leptogenesis: Beyond the SM+seesaw

[D. Aristizabal, M. Losada, EN, PLB659 (2008)]

Assume a $U(1)_F$ (flavor) symmetry that forbids a direct $\overline{\ell}NH$ coupling, and that the flavor symmetry is still unbroken during LG: $\langle S \rangle = 0$.



 $\epsilon = \sum_{\alpha} \epsilon_{\alpha} = 0$

$$\tilde{\lambda}_{\alpha K} = \left(h \frac{\langle S \rangle}{M_F} \lambda^{\dagger} \right)_{\alpha K};$$

$$\epsilon_{\alpha} = \frac{3}{128\pi} \frac{\mathbb{I}m \sum_{\beta} \left[\left(hr^2 h^{\dagger} \right)_{\beta\alpha} \tilde{\lambda}_{1\beta} \tilde{\lambda}_{1\alpha}^* \right]}{\left(\tilde{\lambda} \tilde{\lambda}^{\dagger} \right)_{11}} \sim \mathcal{O}(h^2);$$

$$\tilde{m}_{\alpha} \sim \mathcal{O}(\tilde{\lambda}^2); \quad m_{\nu} \sim \frac{\tilde{\lambda}^2 v^2}{M_N} \sim \mathcal{O}(\tilde{\lambda}^2)$$

By decoupling ϵ_{α} from $\tilde{m}_{\alpha}, m_{\nu}$ the LG $_{10^{-}}$ scale can be lowered: $M_N \sim \text{few TeV}$.

$$|Y_{\Delta \ell_i}| = -4.6 \times 10^{-5}$$

$$\epsilon_2 = 1.3 \times 10^{-5}$$

$$\epsilon_3 = 3.3 \times 10^{-5}$$

$$Y_{\Delta \ell_1} = -1.3 \times 10^{-11}$$

$$Y_{\Delta \ell_2} = 9.2 \times 10^{-12}$$

$$Y_{\Delta \ell_3} = 2.2 \times 10^{-11}$$

$$z$$

Leptogenesis Cosener's House - June 8-10, 2009 - p. 13

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_{\alpha 1} \overline{N_1} \ell_{\alpha} H_u + h_{\alpha}^* \overline{e}_{\alpha} \ell_{\alpha} H_d + \text{h.c.}$$

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_k \,\overline{N_k} \,\ell_k \,H_u \quad + \quad \dots$$

Can the lepton asymmetry generated in the *CP* violating decays $N_{2,3} \rightarrow \ell_{2,3}$; $(\bar{\ell}_{2,3})$ be important for Baryogenesis ?

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_k \,\overline{N_k} \,\ell_k \,H_u \quad + \quad \dots$$

Can the lepton asymmetry generated in the CP violating decays $N_{2,3} \rightarrow \ell_{2,3}$; $(\overline{\ell}_{2,3})$ be important for Baryogenesis ?

- $\tilde{m}_1 \ll m_*$: ' N_1 decoupling regime', Y_{ℓ_2} survives, and is responsible for $Y_{\Delta B}$. (O. Vives, P. Di Bari)

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_k \,\overline{N_k} \,\ell_k \,H_u \quad + \quad \dots$$

Can the lepton asymmetry generated in the *CP* violating decays $N_{2,3} \rightarrow \ell_{2,3}$; $(\bar{\ell}_{2,3})$ be important for Baryogenesis ?

- $\tilde{m}_1 \ll m_*$: ' N_1 decoupling regime', Y_{ℓ_2} survives, and is responsible for $Y_{\Delta B}$. (O. Vives, P. Di Bari)
- $\tilde{m}_1 \sim m_*$: 'moderate' washouts, $Y_{\Delta \ell_2}$ in part survives. It contributes to $Y_{\Delta B}$.
- $\tilde{m}_1 \gg m_*$: 'very strong' washout regime, $Y_{\Delta \ell_2}$ in part survives, and it can be the main responsible for $Y_{\Delta B}$ (contrary to common belief).

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_k \,\overline{N_k} \,\ell_k \,H_u \quad + \quad \dots$$

Can the lepton asymmetry generated in the *CP* violating decays $N_{2,3} \rightarrow \ell_{2,3}$; $(\bar{\ell}_{2,3})$ be important for Baryogenesis ?

- $\tilde{m}_1 \gg m_*$: 'very strong' washout regime, $Y_{\Delta \ell_2}$ in part survives, and it can be the main responsible for $Y_{\Delta B}$ (contrary to common belief).

At $T \sim M_{N_1}$, λ_1 -Yukawa processes become fast, and induce decoherence of all lepton states, projecting them onto $(\ell_1, \ell_0 \equiv \ell_{\perp_1})$. That is: $\ell_2 \to (\ell_1, \ell_0)_{\perp}$.

$$-\mathcal{L}_{\text{Yukawa}} = \lambda_k \,\overline{N_k} \,\ell_k \,H_u \quad + \quad \dots$$

Can the lepton asymmetry generated in the *CP* violating decays $N_{2,3} \rightarrow \ell_{2,3}$; $(\bar{\ell}_{2,3})$ be important for Baryogenesis ?

- $\tilde{m}_1 \gg m_*$: 'very strong' washout regime, $Y_{\Delta \ell_2}$ in part survives, and it can be the main responsible for $Y_{\Delta B}$ (contrary to common belief).
- At $T \sim M_{N_1}$, λ_1 -Yukawa processes become fast, and induce decoherence of all lepton states, projecting them onto $(\ell_1, \ell_0 \equiv \ell_{\perp_1})$. That is: $\ell_2 \to (\ell_1, \ell_0)_{\perp}$.
- ◇ If the following conditions are realized, LG occurs mainly through N₂ effects: $\eta_2 \cdot \epsilon_2 \neq 0$; $\tilde{m}_1 \gg m_*$; $M_2/M_1 \gg 1$.

* Since $\ell_0 \perp \ell_1$, the component of the asymmetry $Y_{\Delta \ell_2}$ along the ℓ_0 direction: $Y_{\Delta \ell_0} = |\langle \ell_0 | \ell_2 \rangle|^2 Y_{\Delta \ell_2}$ is protected from N_1 washouts and survives.

Conclusions and Outlook

- Leptogenesis is a very attractive scenario to explain $Y_{\Delta B}$. Recent developments showed that *quantitative* and *qualitative* estimates of $Y_{\Delta B}$ have to take into account the detailed flavor structure of the seesaw parameters.
- Implications for the low energy neutrino parameters established in the one-flavor approximation, (e.g. $m_{\nu} \lesssim 0.15 \,\text{eV}$) do not hold in general (or hold only under much more restrictive assumptions).

Conclusions and Outlook

- Leptogenesis is a very attractive scenario to explain $Y_{\Delta B}$. Recent developments showed that *quantitative* and *qualitative* estimates of $Y_{\Delta B}$ have to take into account the detailed flavor structure of the seesaw parameters.
- Implications for the low energy neutrino parameters established in the one-flavor approximation, (e.g. $m_{\nu} \lesssim 0.15 \,\text{eV}$) do not hold in general (or hold only under much more restrictive assumptions).
- Experimental detection of $0\nu 2\beta$ decays and/or CP_L in the lepton sector will strengthen the case for leptogenesis but will not prove it.
- Failure of revealing CP_L will not disprove LG. (However, if a sizeable $\theta_{13} \neq 0$ is established, it would disfavor it.)
- If a quasi degenerate or IH ν -spectrum is established, failure of revealing $0\nu 2\beta$ -decays will strongly disfavor LG. (In the DH case no $0\nu 2\beta$ signal is expected.)

Conclusions and Outlook

- Leptogenesis is a very attractive scenario to explain $Y_{\Delta B}$. Recent developments showed that *quantitative* and *qualitative* estimates of $Y_{\Delta B}$ have to take into account the detailed flavor structure of the seesaw parameters.
- Implications for the low energy neutrino parameters established in the one-flavor approximation, (e.g. $m_{\nu} \lesssim 0.15 \,\text{eV}$) do not hold in general (or hold only under much more restrictive assumptions).
- Experimental detection of $0\nu 2\beta$ decays and/or CP_L in the lepton sector will strengthen the case for leptogenesis but will not prove it.
- Failure of revealing CP_L will not disprove LG. (However, if a sizeable $\theta_{13} \neq 0$ is established, it would disfavor it.)
- If a quasi degenerate or IH ν -spectrum is established, failure of revealing $0\nu 2\beta$ -decays will strongly disfavor LG. (In the DH case no $0\nu 2\beta$ signal is expected.)
- Finally, LHC + EDM experiments will be able to establish or falsify EWB. This will indirectly determine the relevance of future LG studies.