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Motivation

The flavor problem of the Standard Model

◮ What flavor is?

◮ Why do the parameters of the flavor sector, the fermion
masses and mixing matrices, take the values they do?

◮ A popular and successful approach is to impose a non-abelian
discrete flavor symmetry Gf to explain certain observed
regularities.

◮ The nature of flavor is, in the context of flavor symmetries,
therefore usually reduced to the question as to the origin of
that symmetry.
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Motivation

The origin of the flavor symmetry

◮ Two main types of symmetries are needed to construct the
Lagrangian of the Standard Model: space-time and gauge
symmetries.
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Motivation

The origin of the flavor symmetry

◮ Two main types of symmetries are needed to construct the
Lagrangian of the Standard Model: space-time and gauge
symmetries.

◮ The origin of discrete flavor symmetry may come from the
Breaking of Continuous Flavor symmetry at High energy
scale: SU(3) (SU(2), SO(3)) → Gf . However, this requires
the large representations of SU(3) and it is a highly

non-trivial phenomenological task.
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Motivation

The origin of the flavor symmetry

◮ Two main types of symmetries are needed to construct the
Lagrangian of the Standard Model: space-time and gauge
symmetries.

◮ The origin of discrete flavor symmetry may come from the
Breaking of Continuous Flavor symmetry at High energy
scale: SU(3) (SU(2), SO(3)) → Gf . However, this requires
the large representations of SU(3) and it is a highly

non-trivial phenomenological task.

◮ The second possibility for the origin of the discrete flavor
symmetry is the Breaking of Space-time symmetry from
extra-dimensions: Poincare 6d → Poincare 4d × Gf by
orbifolding. (G. Altarelli, F. Feruglio, and Y. Lin ’06)
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Symmetries from Orbifolding

General Information about Orbifolds

Two dimensional Torus
The 2-dimensional torus T 2 is obtained by identifying the opposite
sides of a parallelogram:

(x5, x6) → (x5, x6) + ~e1

(x5, x6) → (x5, x6) + ~e2 , (1)

where ~e1 = (1, 0), ~e2 = C (cos (α), sin (α)) are the basis vectors of
the torus.
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Symmetries from Orbifolding

General Information about Orbifolds

Orbifold T
2/ZN

Orbifold can be obtained by modding out torus with the discrete
group ZN :

(x5, x6) → Ω(x5, x6) (2)

where Ω is the rotation generator of the discrete group ZN .
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Symmetries from Orbifolding

All possible 2-dimensional Orbifolds

◮ T 2/Z2, the basis vectors (e1 = (1, 0), e2 = (a, b)) are
arbitrary.

◮ T 2/Z3, the basis vectors are fixed
(e1 = (1, 0), e2 = (1/2,

√
3/2))

◮ T 2/Z4, the basis vectors are fixed (e1 = (1, 0), e2 = (0, 1))

◮ T 2/Z6, the basis vectors are fixed
(e1 = (1, 0), e2 = (1/2,

√
3/2))
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Symmetries from Orbifolding

Symmetries from Orbifolding T
2/ZN

◮ Choose the torus basis vectors and also modding out ZN group

◮ Calculate the fixed points (3d-Branes where SM particles
reside)

◮ Consider the symmetries that connect these fixed points
(3d-Branes)

◮ Transform these symmetries to the non-abelian discrete flavor
symmetries in 4 dimensions

Note that from now on we parametrize the torus by the complex
number z = x5 + ix6.
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Symmetries from Orbifolding

T
2/Z2

The Torus T 2 is defined by identifying the points in the complex
plane related by

z → z + 1 (3)

z → z + γ. (4)

In fact, the γ can be arbitrary, however, in order to get the flavor
symmetry, we restrict it to be either γ = e iπ/3 (G. Altarelli, F.

Feruglio, Y. Lin ’06) which gives us S4 (C.Hagedorn, M.Lindner,

R.N.Mohapatra ’06,...)flavor symmetry in the case that the
space-time symmetry is Poincare and A4 (E.Ma, G.Rajasekaran

’01,...) for the proper Lorentz symmetry or if we choose
γ = e iπ/2 = i , we will get D4 symmetry.
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Symmetries from Orbifolding

T
2/Z2

The parity (Z2) is defined by

z → −z . (5)

The fixed points are given by
(z1, z2, z3, z4) = (1/2, (1 + i)/2, i/2, 0).
The fixed points have two kinds of symmetries, namely, translation
symmetry and rotation symmetry.
Translation symmetries:

S1 : z → z + 1/2, (6)

S2 : z → z + i/2. (7)

Rotation symmetry:

TR : z → ωz , (8)

where ω = e iπ/2 = i .
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Symmetries from Orbifolding

T
2/Z2

We can also write the symmetries in term of the interchanging of
the fixed points,

S1[(14)(23)] : (z1, z2, z3, z4) → (z4, z3, z2, z1), (9)

S2[(12)(34)] : (z1, z2, z3, z4) → (z2, z1, z4, z3), (10)

TR [(13)(2)(4)] : (z1, z2, z3, z4) → (z3, z2, z1, z4). (11)

From these elements we can formulate the generators of the
discrete group D4,

A = [(13)(2)(4)][(14)(23)] = (1432), (12)

B = [(12)(34)]. (13)
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Symmetries from Orbifolding

T
2/Z2

z1

z2z3

z4 e1

e2 e1+e2

x5

x6
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Symmetries from Orbifolding

T
2/Z3

z1

z2

z3

e1

e2 e1+e2

x5

x6
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Symmetries from Orbifolding

T
2/Z4
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Symmetries from Orbifolding

T
2/Z6

z4
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z6

z1
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Symmetries from Orbifolding

◮ For T 2/Z2, the flavor symmetries are A4,S4,D4

◮ For T 2/Z3, the flavor symmetry is D3 ≃ S3

◮ For T 2/Z4, the flavor symmetry is D4

◮ For T 2/Z6, the flavor symmetry is D3 × Z2 ≃ D6
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Conclusions

Conclusions

◮ The breaking of the Poincare symmetry 6d to 4d,
R4 × T 2/ZN → R4 × Gf , gives us the non-abelian discrete
flavor symmetries such as S4,A4,D3 ≃ S3,D4,D6 ≃ D3 × Z2,
which are all popular groups for flavored model building.

◮ Bonus: The Vacuum alignments of the flavon can be achieved
by Orbifolding (T.Kobayashi, Y.Omura, K.Yoshioka,’08).

◮ In this approach, we see a connection between flavor
symmetry in 4d and space-time symmetry in extra dimensions.
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