Adisorn Adulpravitchai Max-Planck-Institut für Kernphysik, Heidelberg

in collaboration with A. Blum and M. Lindner arXiv:0906.0468 [hep-ph]

> 10 June 2009 NuFlavour 2009, Abingdon

Motivation

Symmetries from Orbifolding

Conclusions

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Motivation

The flavor problem of the Standard Model

- What flavor is?
- Why do the parameters of the flavor sector, the fermion masses and mixing matrices, take the values they do?
- ► A popular and successful approach is to impose a non-abelian discrete flavor symmetry G_f to explain certain observed regularities.
- The nature of flavor is, in the context of flavor symmetries, therefore usually reduced to the question as to the origin of that symmetry.

(ロ) (同) (E) (E) (E)

Motivation

The origin of the flavor symmetry

Two main types of symmetries are needed to construct the Lagrangian of the Standard Model: space-time and gauge symmetries.

(本間) (本語) (本語) (二語

- Motivation

The origin of the flavor symmetry

- Two main types of symmetries are needed to construct the Lagrangian of the Standard Model: space-time and gauge symmetries.
- ▶ The origin of discrete flavor symmetry may come from the Breaking of Continuous Flavor symmetry at High energy scale: SU(3) (SU(2), SO(3)) → G_f . However, this requires the large representations of SU(3) and it is a highly non-trivial phenomenological task.

(ロ) (同) (E) (E) (E)

- Motivation

The origin of the flavor symmetry

- Two main types of symmetries are needed to construct the Lagrangian of the Standard Model: space-time and gauge symmetries.
- ▶ The origin of discrete flavor symmetry may come from the Breaking of Continuous Flavor symmetry at High energy scale: SU(3) (SU(2), SO(3)) → G_f . However, this requires the large representations of SU(3) and it is a highly non-trivial phenomenological task.
- ► The second possibility for the origin of the discrete flavor symmetry is the Breaking of Space-time symmetry from extra-dimensions: Poincare 6d → Poincare 4d × G_f by orbifolding. (G. Altarelli, F. Feruglio, and Y. Lin '06)

General Information about Orbifolds

Two dimensional Torus

The 2-dimensional torus T^2 is obtained by identifying the opposite sides of a parallelogram:

$$\begin{array}{rcl} (x_5, x_6) & \to & (x_5, x_6) + \vec{e}_1 \\ (x_5, x_6) & \to & (x_5, x_6) + \vec{e}_2 \end{array},$$
 (1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

where $\vec{e}_1 = (1,0)$, $\vec{e}_2 = C(\cos(\alpha), \sin(\alpha))$ are the basis vectors of the torus.

General Information about Orbifolds

Orbifold T^2/Z_N

Orbifold can be obtained by modding out torus with the discrete group Z_N :

$$(x_5, x_6) \rightarrow \Omega(x_5, x_6)$$
 (2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

where Ω is the rotation generator of the discrete group Z_N .

All possible 2-dimensional Orbifolds

- ► T²/Z₂, the basis vectors (e₁ = (1,0), e₂ = (a, b)) are arbitrary.
- ► T^2/Z_3 , the basis vectors are fixed ($e_1 = (1,0), e_2 = (1/2, \sqrt{3}/2)$)
- T^2/Z_4 , the basis vectors are fixed $(e_1 = (1, 0), e_2 = (0, 1))$
- T^2/Z_6 , the basis vectors are fixed $(e_1 = (1,0), e_2 = (1/2, \sqrt{3}/2))$

Symmetries from Orbifolding T^2/Z_N

- Choose the torus basis vectors and also modding out Z_N group
- Calculate the fixed points (3d-Branes where SM particles reside)
- Consider the symmetries that connect these fixed points (3d-Branes)
- Transform these symmetries to the non-abelian discrete flavor symmetries in 4 dimensions

Note that from now on we parametrize the torus by the complex number $z = x_5 + ix_6$.

 T^{2}/Z_{2}

The Torus T^2 is defined by identifying the points in the complex plane related by

$$z \rightarrow z+1$$
 (3)

$$z \rightarrow z + \gamma.$$
 (4)

In fact, the γ can be arbitrary, however, in order to get the flavor symmetry, we restrict it to be either $\gamma = e^{i\pi/3}$ (G. Altarelli, F. Feruglio, Y. Lin '06) which gives us S_4 (C.Hagedorn, M.Lindner, R.N.Mohapatra '06,...)flavor symmetry in the case that the space-time symmetry is Poincare and A_4 (E.Ma, G.Rajasekaran '01,...) for the proper Lorentz symmetry or if we choose $\gamma = e^{i\pi/2} = i$, we will get D_4 symmetry.

 T^2/Z_2

The parity (Z_2) is defined by

$$z \to -z.$$
 (5)

The fixed points are given by

$$(z_1, z_2, z_3, z_4) = (1/2, (1+i)/2, i/2, 0).$$

The fixed points have two kinds of symmetries, namely, translation symmetry and rotation symmetry.

Translation symmetries:

$$S_1: z \rightarrow z+1/2, \tag{6}$$

$$S_2: z \rightarrow z+i/2. \tag{7}$$

Rotation symmetry:

$$T_R: z \rightarrow \omega z,$$
 (8)

where $\omega = e^{i\pi/2} = i$. Adisorn Adulpravitchai Max-Planck-Institut für Kernphysik, He

sik, He Non-Abelian Discrete Flavor Symmetries from T^2/Z_N Orbifold

 T^{2}/Z_{2}

We can also write the symmetries in term of the interchanging of the fixed points,

$$S_1[(14)(23)]:(z_1,z_2,z_3,z_4) \rightarrow (z_4,z_3,z_2,z_1),$$
 (9)

$$S_2[(12)(34)]:(z_1,z_2,z_3,z_4) \rightarrow (z_2,z_1,z_4,z_3),$$
 (10)

$$T_R[(13)(2)(4)]:(z_1,z_2,z_3,z_4) \rightarrow (z_3,z_2,z_1,z_4).$$
 (11)

From these elements we can formulate the generators of the discrete group D_4 ,

$$A = [(13)(2)(4)][(14)(23)] = (1432),$$
(12)
$$B = [(12)(34)].$$
(13)

Symmetries from Orbifolding

 T^{2}/Z_{2}

Adisorn Adulpravitchai Max-Planck-Institut für Kernphysik, H $_{
m C}$ Non-Abelian Discrete Flavor Symmetries from T^2/Z_N Orbifold

Symmetries from Orbifolding

 T^{2}/Z_{3}

Adisorn Adulpravitchai Max-Planck-Institut für Kernphysik, H $_{
m C}$ Non-Abelian Discrete Flavor Symmetries from T^2/Z_N Orbifold

Symmetries from Orbifolding

 T^{2}/Z_{4}

Adisorn Adulpravitchai Max-Planck-Institut für Kernphysik, H $_{
m N}$ Non-Abelian Discrete Flavor Symmetries from T^2/Z_N Orbifold

Symmetries from Orbifolding

 T^{2}/Z_{6}

Symmetries from Orbifolding

- For T^2/Z_2 , the flavor symmetries are A_4, S_4, D_4
- For T^2/Z_3 , the flavor symmetry is $D_3 \simeq S_3$
- For T^2/Z_4 , the flavor symmetry is D_4
- For T^2/Z_6 , the flavor symmetry is $D_3 \times Z_2 \simeq D_6$

-Conclusions

Conclusions

- ▶ The breaking of the Poincare symmetry 6d to 4d, $R^4 \times T^2/Z_N \rightarrow R^4 \times G_f$, gives us the non-abelian discrete flavor symmetries such as $S_4, A_4, D_3 \simeq S_3, D_4, D_6 \simeq D_3 \times Z_2$, which are all popular groups for flavored model building.
- Bonus: The Vacuum alignments of the flavon can be achieved by Orbifolding (T.Kobayashi, Y.Omura, K.Yoshioka,'08).
- In this approach, we see a connection between flavor symmetry in 4d and space-time symmetry in extra dimensions.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで