CP violation in the MSSM at the LHC

Jamie Tattersall

Work in collaboration with: G Moortgat-Pick, J Ellis, F Moortgat, J Smillie; (arXiv:0809.1607)

Soon to be published: P Bechtle, B Gosdzik, G Moortgat-Pick, K Rolbiecki, P Wienemann

Institute for Particle Physics Phenomenology,
Durham University

IPPP-Imperial Workshop, London, May 2009

Momentum Reconstruction

Outline

Introduction

- Introduction
 - CP Violation
 - SUSY Particles
 - Triple Product Correlations
- **Squark-Gluino Production**
 - Process
 - Results
- **Momentum Reconstruction**
 - Method
 - Results
- Summary

Outline

Introduction

- 1 Introduction
 - CP Violation
 - SUSY Particles
 - Triple Product Correlations
- 2 Squark-Gluino Production
 - Process
 - Results
- Momentum Reconstruction
 - Method
 - Results
- Summary

Introduction

In the Standard Model, the only source of CP violation comes from the complex phase within the CKM matrix.

- The phase of the CKM in the Standard Model contains too little CP violation for Baryogensis. (Phys. Rept. 401, 1 (2005): Chung, Everett, Kane, King, Lykken and Wang)
- Consequently, we require new CP violating terms to explain the asymmetry we see in the universe.

Introduction

In the Standard Model, the only source of CP violation comes from the complex phase within the CKM matrix.

- The phase of the CKM in the Standard Model contains too little CP violation for Baryogensis. (Phys. Rept. 401, 1 (2005): Chung, Everett, Kane, King, Lykken and Wang)
- Consequently, we require new CP violating terms to explain the asymmetry we see in the universe.

MSSM (Minimal Supersymmetric Standard Model) can contain several complex parameters that can all contribute.

Our Project

We explore methods of determining if CP violating effects in the electroweak part of the MSSM can be observed at the LHC.

- Most detailed phenomenological analyses has been based on a future LC.
- Precise determination of phases only expected at a LC.
- Crucial for future search strategy to use LHC data to learn as much as possible.
- Choose processes with the most promising discovery potential at LHC (coloured states).

Momentum Reconstruction

CP Phase

We consider the MSSM with parameters defined at the weak scale.

 In this framework the gaugino and Higgsino mass parameters and the trilinear couplings can have complex phases.

$$M_i = |M_i|e^{i\phi_i}, \qquad \mu = |\mu|e^{i\phi_\mu}, \qquad A_f = |A_f|e^{i\phi_f}$$

- For the neutralino sector only the phase of M₁ and μ are important (the phase of M₂ can always be rotated away).
- Physical phases ϕ_i , ϕ_μ and ϕ_f generate CP odd observables (unique determination of CP phases) that can in principle be large as they are already present at tree level.

Neutralinos

The supersymmetric partners of the B, W^{\pm}, H_1^0, H_2^0 mix to produce mass eigenstates called neutralinos.

Mixing matrix:

$$\mathcal{M}_{N} = \left(egin{array}{cccc} M_{1} & 0 & -m_{Z}s_{W}c_{eta} & m_{Z}s_{w}s_{eta} \\ 0 & M_{2} & m_{Z}c_{W}c_{eta} & -m_{Z}c_{W}s_{eta} \\ -m_{Z}s_{W}s_{eta} & m_{Z}c_{W}c_{eta} & 0 & -\mu \\ m_{Z}s_{W}s_{eta} & -m_{Z}c_{W}s_{eta} & -\mu & 0 \end{array}
ight)$$

 $M_1 = U(1)$ Gaugino Mass Parameter

 $M_2 = SU(2)$ Gaugino Mass Parameter

SUSY Particles

Diagonalisation

The matrix is diagonalised by a unitary mixing matrix N:

$$N^*\mathcal{M}_N N^\dagger = \mathrm{diag}(m_{\widetilde{\chi}_1^0}, m_{\widetilde{\chi}_2^0}, m_{\widetilde{\chi}_3^0}, m_{\widetilde{\chi}_4^0})$$

where $m_{\tilde{\chi}_i^0}, i=1,..,4$ are the (non-negative) masses of the physical neutralino states.

The lightest neutralino is then decomposed as:

$$\tilde{\chi}_{1}^{0} = N_{11}\tilde{B} + N_{12}\tilde{W} + N_{13}\tilde{H}_{1} + N_{14}\tilde{H}_{2}$$

with the bino (f_B) , wino (f_W) and Higgsino (f_H) fractions defined as:

$$f_B = |N_{11}|^2, \quad f_W = |N_{12}|^2, \quad f_{H_1} = |N_{13}|^2, \quad f_{H_2} = |N_{14}|^2.$$

The LSP will hence be mostly bino, wino or Higgsino according to the smallest mass parameter, M_1 , M_2 or μ .

Time reversal

Triple Product Correlations are a useful tool for studying CP odd observables.

Construct an observable:

$$\mathcal{T} = \overrightarrow{p_1} \cdot (\overrightarrow{p_2} \times \overrightarrow{p_3})$$

- Sensitive to CP Phases in the coupling of $\tilde{\chi}_2^0$ production and decay.
- Flips sign under T operation, CP odd observable (CPT) Theorem).
- Requires a decay mediated by a spinning particle and three independent momenta.

Momentum Reconstruction

Outline

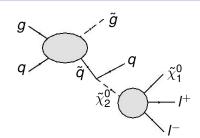
Introduction

- - CP Violation
 - SUSY Particles
 - Triple Product Correlations
- **Squark-Gluino Production**
 - Process
 - Results
- - Method
 - Results
- **Summary**

Process

Process studied:

$$\begin{array}{ccc} q \; g & \Longrightarrow & \tilde{q}_L \; \tilde{g}, \\ \tilde{q}_L & \Longrightarrow & \tilde{\chi}_2^0 \; q, \\ \tilde{\chi}_2^0 & \Longrightarrow & \tilde{\chi}_1^0 \; I^+ \; I^-. \end{array}$$

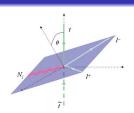

- Process takes advantage of one of the dominant SUSY production channel at the LHC.
 - Kinematic constraints:

$$\label{eq:mass_equation} \textit{M}_{\tilde{\chi}^0_2} < \textit{M}_{\tilde{e}_{L,R}}, \quad \textit{M}_{\tilde{\chi}^0_2} - \textit{M}_{\tilde{\chi}^0_1} < \textit{M}_{Z}.$$

• Triple product to be reconstructed (sensitive to ϕ_{M_1}):

$$\mathcal{T} = ec{p}_{q} \cdot (ec{p}_{\ell^{+}} imes ec{p}_{\ell^{-}}).$$

• Charge identification not required as \tilde{q} dominates over $\overline{\tilde{q}}$.



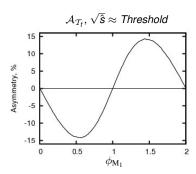
Realising CP asymmetry

I choose an example triple product:

$$\mathcal{T} = \overrightarrow{p_q} \cdot (\overrightarrow{p_{I^+}} imes \overrightarrow{p_{I^-}})$$

Momentum conservation forces I^+ , I^- and $\tilde{\chi}^0_1$ to define a plane in the rest frame of $\tilde{\chi}^0_2$.

- A non-zero expectation value of \mathcal{T} , implies a non-zero average angle between the plane and the z-axis (p_q) .
- Define asymmetry parameter:


$$\eta = \frac{N_{+} - N_{-}}{N_{+} + N_{-}} = \frac{N_{+} - N_{-}}{N_{total}}$$

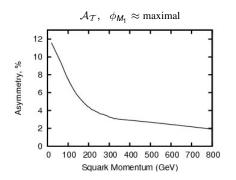
where:

$$N_{+} = \int_{0}^{1} \frac{d\Gamma}{d\cos\theta} d\cos\theta, \quad N_{-} = \int_{-1}^{0} \frac{d\Gamma}{d\cos\theta} d\cos\theta.$$

Results

Partonic Level Asymmetry

Parameter	Value	Particle	Mass	Particle	Mass
<i>m</i> ₀	150	ğ	496.5	$\tilde{\chi}_1^0$	78.1
m _{1/2}	200	\tilde{d}_L	484.1	$\tilde{\chi}_2^0$	148.4
A ₀	-650	\tilde{d}_R	466.4	$\tilde{\chi}_1^{\pm}$	148.2
$\tan \beta$	10	\tilde{u}_L	477.9	$\tilde{\chi}_{2}^{\pm}$	436.0
sign μ	+	\tilde{u}_R	465.9	е̃ _L	207.5
M ₁	80.5	\tilde{b}_1	397.2	е̃ _R	173.1
M ₂	153.3	\tilde{b}_2	462.6	$ ilde{ u}_{e}$	192.0
M ₃	484.6	\tilde{t}_1	171.0	$ ilde{ au}_1$	149.4
μ	419.0	\tilde{t}_2	498.0	$ ilde{ au}_2$	212.5
				$\tilde{\nu}_{ au}$	187.2

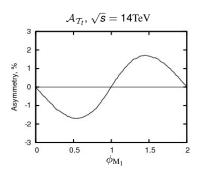

- Asymmetry can be as large as 15%.
- mSugra scenario chosen with favourable features.
 - Large branching ratios for our decay chain.
 - Coupling character of $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^0$ here produce large asymmetry.

Momentum Reconstruction

Results

Introduction

Kinematics of \tilde{q}

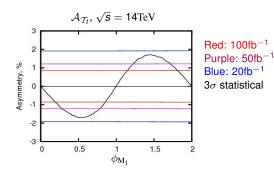


- \(\tilde{q} \) are boosted due to production process and PDFs.
- Asymmetry is maximal in rest frame of decaying particle.
- Dilution of asymmetry due to q flipping orientation in comparison to plane defined by I^+I^- .

Results

Introduction

Hadronic Level Asymmetry



- Asymmetry drops significantly at the LHC for two reasons.
 - \tilde{q} are boosted due to production process and PDFs.
 - \tilde{q}^* are present in the sample.
- Asymmetry drops to ~ 2% maximum.

Results

Introduction

Hadronic Level Asymmetry

- Cross section of production \approx 17pb.
- $BR(\tilde{q}_L \rightarrow \tilde{\chi}_2^0 q) \approx 30\%$, $BR(\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \ell^+ \ell^-) \approx 10\%$
- Hints could be seen at the LHC.

Momentum Reconstruction

Outline

- - CP Violation
 - SUSY Particles
 - Triple Product Correlations
- **Squark-Gluino Production**
 - Process
 - Results
- **Momentum Reconstruction**
 - Method
 - Results
- **Summary**

Introduction

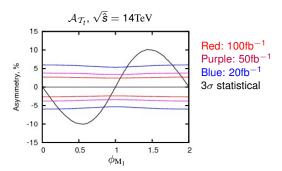
Momentum Reconstruction

- Main problem with measuring asymmetries at the LHC is the dilution due to boosted frames.
- We reconstruct the frame of the decaying particle and the full asymmetry is restored.
- Reconstruct LSP momentum using the set of invariant equations.
- Also investigate the effect of boosting into the frames of the visible decay products.

Method

Process

Mass conditions:

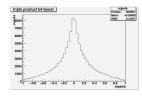

$$\begin{array}{rcl} m_{\tilde{q}} & = & (P_{\tilde{\chi}_{2}^{0}} + P_{q})^{2}, \\ m_{\tilde{\chi}_{2}^{0}} & = & (P_{\tilde{\chi}_{1}^{0}} + P_{\ell^{+}} + P_{\ell^{-}})^{2}, \\ m_{\tilde{g}} & = & (P_{\tilde{t}} + P_{t})^{2}, \\ m_{\tilde{t}} & = & (P_{\tilde{\chi}_{1}^{+}} + P_{b})^{2}, \\ \overrightarrow{p}_{\textit{miss}}^{T} & = & \overrightarrow{p}_{\tilde{\chi}_{1A}^{0}}^{T} + \overrightarrow{p}_{\tilde{\chi}_{1B}^{0}}^{T} + \overrightarrow{p}_{\nu_{\ell}}^{T}. \end{array}$$

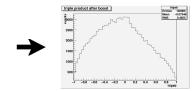
- Assuming particle masses are known, momenta of \(\tilde{\chi}_0^1\) can be reconstructed.
- By boosting into rest frame of decaying \tilde{q} , parton level asymmetry is recovered.

Results

Introduction

Results


- Asymmetry returns to parton level magnitude.
- Significantly increases statistical significance of any result.


Outline

- Introduction
 - CP Violation
 - SUSY Particles
 - Triple Product Correlations
- Squark-Gluino Production
 - Process
 - Results
- Momentum Reconstruction
 - Method
 - Results
- Summary

Tools for further work

- Herwig++ now includes three body decays and spin correlations. (arXiv:0803.0883: Bahr et al)
 - Fully reproduces our analytical results and lets us produce Monte Carlo events for further testing.

 Delphes is a new tool that allows quick detector simulation.

(arXiv:0903.2225: S. Ovyn, X. Rouby, V. Lemaitre)

Summary

- New forms of CP violation are required to explain asymmetry we see in the universe.
- MSSM can contain new phases that lead to CP violation.
- Initial study of \tilde{t} production was unpromising for LHC.
- New study using $\tilde{q}\tilde{g}$ much more hopeful.
- Data from ILC will be crucial to constrain parameter space of MSSM.
- Using momentum reconstruction further improves the situation.

Introduction

Extra slides on CP constraints and other possible MSSM CP observables

CP Constraints

Certain combinations of the CP violating phases are constrained by experimental upper bounds on various EDMs (Electric Dipole Moments).

- Ignoring possible cancellations ϕ_{μ} is the most severely constrained.
 - Contributes at the one loop level to EDMs.
 - We set to zero in our analysis.
- ϕ_{M_1} also contributes at the one loop level to EDMs.
 - Accidental cancellations may allow it to become less constrained.
- The phases of the third-generation trilinear couplings, $\phi_{A_{t,h,\tau}}$ have weaker constraints.
 - Only contribute to EDMs at the two-loop level.

Time reversal

Triple Product Correlations are a useful tool for studying CP odd observables.

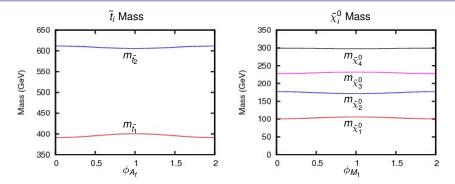
Construct an observable:

$$\mathcal{T} = \overrightarrow{p_1} \cdot (\overrightarrow{p_2} \times \overrightarrow{p_3})$$

- Naïve time reversal operation, T_N , reverses 3-momenta $\overrightarrow{p_i} \rightarrow -\overrightarrow{p_i}$ and polarisations.
- Assuming CPT_N holds (final-state interactions and finite-width effects are negligible), T_N violation is equivalent to CP violation.
- Asymmetry will vanish under CP conservation.
- Triple product correlations as a CP indicator are a tree level effect.
 - Observables are not suppressed by loops as is the case with B-physics.

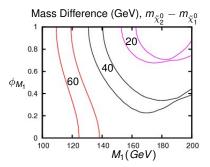
CP odd observables

Require at least a three body decay mediated by a particle that is not a scalar (allow spin correlations).

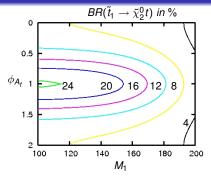

- Observable correlations cannot occur solely from decays of a neutralino.
- Triple products originate from the Dirac Trace that produces the covariant product:

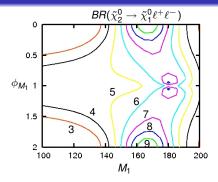
$$\operatorname{tr}(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma^{5}) \longrightarrow i\epsilon_{\mu\nu\rho\sigma}p_{a}^{\mu}p_{b}^{\nu}p_{c}^{\rho}p_{d}^{\sigma}.$$

 The covariant product can be expanded in terms of explicit 4-momentum components:

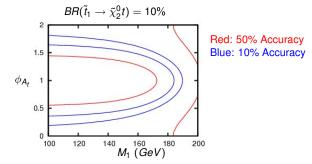

$$E_a \overrightarrow{p_b} \cdot (\overrightarrow{p_c} \times \overrightarrow{p_d}) + \dots$$

Variation of Mass with CP Phase


- Masses of both \tilde{t} and $\tilde{\chi}_{i}^{0}$ vary with phase.
- CP even quantity.
- An absolute mass measurement at the LHC will not be accurate enough to constrain the phase.


Mass Difference

- Assumed a 1% experimental error.
- Assumed a 5% error in determination of M₂.
- A measurement of the mass difference $m_{\tilde{\chi}^0_2} m_{\tilde{\chi}^0_1}$ looks potentially more promising if the mass difference happens to be small (<40 GeV).


Branching Ratios

- Both $BR(\tilde{t}_1 \to \tilde{\chi}_2^0 t)$ and $BR(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 \ell^+ \ell^-)$ vary with phase.
- Both couplings and phase space factors are responsible for behaviour.
- CP even quantity.
- Highly scenario dependent.

Measurement of Branching Ratios

Momentum Reconstruction

- Parameter space allowed when the experimental accuracy of the branching ratio measurement is 50%, Δ_1 (LHC) or 10%, Δ_2 (LC).
- Analysis assumes all other scenario parameters are known
- Measurement only looks likely with a future Linear Collider.