IPPP-Imperial meeting, 28.05.2009

Search for neutrinoless double beta decay: status of SuperNEMO project

Yu. Shitov, Imperial

Double beta decay basic statements

Double beta decay basic equations

$$A^{0\nu} = (T_{1/2}^{0\nu})^{-1} = G^{0\nu} (Q_{\beta\beta}, Z) | M^{0\nu} |^2 \langle m_{\nu} \rangle^2 / m_e^2 \sim Q_{\beta\beta}^7 Z^2 | M^{0\nu} |^2$$

$$< m_{\nu} >= |U_{el}|^2 m_1 + |U_{e2}|^2 e^{i\alpha_1} m_2 + |U_{e3}|^2 e^{i\alpha_2} m_3 - \text{effective neutrino Majorana mass}$$

$$M^{0\nu} : \text{nuclear matrix element} \\ G^{0\nu} : \text{phase space factor} \\ \hline M : \text{mass } (g) \\ \varepsilon : \text{efficiency} \\ \mathbf{K}_{C.L.} : \text{confidence level} \\ N : \text{Avogadro number} \\ \mathbf{I} : \text{exposition time } (y) \\ \mathbf{K}_{Bckg} : \text{background events/ } (\text{keV/kg/y}) \\ \Delta \mathbf{E} : \text{energy resolution } (\text{keV}) \\ \hline M = \text{energy resolution } (\text{$$

Experimental techniques to observe ββ-decay

Experimental drawbacks

• A few ββ-isotopes can be measured ⁷⁶Ge,¹³⁰Te up to now.

- Unavoidable natural background.
- We don't see electrons, just energy released - no absolute proof, that we see
 ββ0v-peak and not something else (γ-line)!

difficult to accept large mass
smaller efficiency
worth resolution

NEMO-3/SuperNEMO collaboration

~ 80 physicists, 12 countries, 27 laboratories. R&D Program for 02/2006-07/2009 is being carring out. Major contributors: UK, France. Smaller but vital contributions from US, Russia, Czech Republic, Japan.

The NEMO3 detector

Source: 10 kg of $\beta\beta$ isotopes cylindrical, $S = 20 \text{ m}^2$, 60 mg/cm^2

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

Calorimeter: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) **Neutron shield: borated water** (~30 cm) + Wood (Top/Bottom/Gapes between water tanks)

Able to identify e^- , e^+ , γ and α -delayed

Cathodic rings Wire chamber

Calibration tube

¹⁰⁰Mo 2 β 2 ν results

 $\ll\beta\beta$ factory» \rightarrow tool for precision tests

From NEMO to SuperNEMO

NEMO-3

SuperNEMO

$7 \text{ kg }^{100}\text{Mo}$ $T_{1/2}(\beta\beta2\nu) = 7. \ 10^{18} \text{ y}$	Mass of isotope	$\frac{100\text{-}200 \text{ kg }^{82}\text{Se}\ ^{150}\text{Nd}}{T_{1/2}(\beta\beta2\nu)=10^{20}\parallel 10^{19}\text{ y}}$
FWHM ~ 12% at 3 MeV (dominated by calorimeter ~ 8%	Energy resolution) (FWHM of the ββ0v ray)	Total: FWHM ≤7 % at 1 MeV Calorimeter: ≤4 % at 3 MeV
$\mathbf{E}(\mathbf{\beta}\mathbf{\beta}0\mathbf{v}) = 18 \%$	Efficiency	E (ββ0ν) ~ 30 %
²¹⁴ Bi < 300 μBq/kg ²⁰⁸ Tl < 20 μBq/kg	Internal contaminations in the source foils in ²⁰⁸ Tl and ²¹⁴ Bi	(If ⁸²Se) ²¹⁴ Bi < 10 μBq/kg ²⁰⁸ Tl < 2 μBq/kg
$\beta\beta 2\nu \sim 2 \text{ cts} / 7 \text{ kg} / \text{y}$ (²⁰⁸ Tl, ²¹⁴ Bi) ~ 0.5 cnts/7 kg/y	Background	$\beta\beta2\nu=1, {}^{208}\text{Tl}=0.5$ ${}^{214}\text{Bi}=0.5 \text{ cnts}/100 \text{ kg/y}$
$T_{1/2}(\beta\beta0\nu) > 2 \times 10^{24} \text{ y}$ <m_{v}> < 0.3 - 1.3 eV</m_{v}>	Sensitivity	$T_{1/2}(\beta\beta0\nu) > (1-2) \times 10^{26} \text{ y}$ <m_{v}> < 40 - 110 meV</m_{v}>

NEMO-3 successful experience shows us that technique can be extrapolated for larger mass next generation detector to reach new sensitivity level.

SUPERNEMO R&D is in progress since 2006

SuperNEMO basic design

Plane geometry

Source (40 mg/cm²) 12m², tracking volume (~3000 channels) and calorimeter

iew of sub-module ommitting support str

More compact, cheaper, less background from PM, but worse resolution (~10-11%).

Calorimeter R&D

Baseline design detecting cell with required parameters has been designed

Tracker R&D

SuperNEMO tracker (major UK responsibility) has been developed including all accessories required (mechanics, electronics, wiring robot, etc.) 90-cell prototype has been built and testing now.

R&D for ⁸²Se sources

SuperNEMO collaboration has 6 kg of ⁸²Se with technology in hand for full chain of source production: enrichment -> purification -> foil preparation

Purification

Enrichment

Source foil preparation

Low background measurement R&D

Prototype of setup for measurement of extra low levels (a few μ Bq/kg) of radio impurities in SuperNEMO source foils (BiPo) has been developed and successively tested

Simulations

SuperNEMO SoftWare (SNSW) package has been developed and large scale simulations (GRID-based) is in progress

Pre-production prototype (demonstrator module)

SuperNEMO UK proposal has been submitted in April 2009. The main goals of demonstrator (2009-2011) are:

•To demonstrate the feasibility of large scale detector component production with required performance parameters (e.g. calorimeter energy and time resolution, tracker efficiency and purity).

•To measure background contributions from the detector components.

•To finalize the detector design.

•To produce a competitive physics measurement with ⁸²Se covering the region of the Klapdor group claim (1yr of data taking with 6kg of ⁸²Se in the demonstrator module will have a similar sensitivity to GERDA Phase-I).

Baseline design of demonstrator in LSM

Alternative bar design of demonstrator in LSM

World leading double beta-decay projects

Experiment	Isotope	kg	T _{1/2} yr, 90% CL	m _v *, meV	Start-up timescale	Status
НМ	⁷⁶ Ge	15	>1.9 10 ²⁵	230-560	1990	finished
KDHK claim	⁷⁶ Ge	15	(0.7-4.2) 10 ²⁵ (3σ)	150-920	1990	finished
CUORICINO	¹³⁰ Te	11	> 2.4 10 ²⁴	200-900	2002	finished
NEMO 3	¹⁰⁰ Mo	7	2 10 ²⁴ (expect. 2009)	300-1300	2003	running
CUORE	¹³⁰ Te	210	1.3 10 ²⁶	40-92	2011	approved
GERDA, Phase I	⁷⁶ Ge	15	3 10 ²⁵	180-440	2009	approved
Phase II	⁷⁶ Ge	~31	2 10 ²⁶	70-170	2011	approved
EXO 200	¹³⁶ Xe	160	6.4 10 ²⁵	270-380	2008	approved
EXO 1t	¹³⁶ Xe	800	2 10 ²⁷	50-68	2015	R&D
SuperNEMO	⁸² Se/ ¹⁵⁰ Nd	100+	(1-2) 10 ²⁶	40-110	2011	R&D
COBRA	¹¹⁶ Cd	151	1.5 10 ²⁶	38-96	?	R&D

* Matrix elements from MEDEX'07 or provided by experiments

S. Pascoli, S.T.P., 2006

Conclusion

- The $0\nu\beta\beta$ -decay is a test of physics beyond the Standard Model by the search of the leptonic number violation and would determine the nature of the neutrino (Majorana), absolute neutrino mass scale and neutrino hierarchy.

- Several experiments are needed to measure different sources with several techniques.

- NEMO-3 technique can be extrapolated at ~100 kg to be sensitive to $(1-2)\times10^{26}$ y Only tracko-calo (SuperNEMO) and gas TPC can directly register $0\nu\beta\beta$ -decay. In the case of discovery only direct methods will allow to determine the process leading to $\beta\beta(0\nu)$: light neutrino exchange, right-handed current, supersymmetry, etc.

- 3-year SuperNEMO R&D program is carrying out and it is in good shape. Key challenges are calorimeter resolution, isotope choice, and radio purity. Based on design study results full proposal for 100+ kg detector in 2009. "Last minute" isotope change possible. E.g. CUORE sees the signal in ¹³⁰Te.

-First module - 2011 -All 20 modules ~2013

-Target SuperNEMO sensitivity: 20-110 meV by 2016, which is competitive with the other next generation $0\nu\beta\beta$ -experiments.