# Susy search at CMS in leptonic analyses

A.Bryer, Z.Hatherell, G.Karapostoli,<u>M.Pioppi</u>, A.Sparrow Imperial College London Joint IPPP-Imperial College Workshop 28 May 2009

Summary:

- •Imperial College involvement in leptonic analyses
- •Open questions about trigger and selection
- •What can we learn from dilepton analyses?
- Conclusions

#### Expectations @ LHC



# Introduction

- SUSY analyses in CMS will initially look for data excess wrt SM prediction. (Model independent approach)
- SUSY analyses classified by looking at final topology
- IC-CMS group is actively involved in 3 leptonic SUSY analyses
  - Single Lepton + Jets + MET
  - Dilepton Opposite sign + Jets + MET
  - Dilepton Same sign + Jets + MET
- Use of benchmark points (mSugra and GMSB) to test analysis sensitivity in different SUSY scenarios

Common approach to leptonic analyses

- In order to have consistent approach for the search of SUSY phenomena, common variables and common tools have been defined for all the leptonic analyses:
  - Lepton selection
  - Event's variable definition
  - Background estimation method
  - Analysis framework

#### **Common variables**

Since the pt spectrum of leptons from SUSY is unknown, the  $\mu/e$  reconstruction and identification is tuned to select also low pt leptons (pt<15 GeV).





HT = ΣPt<sub>jet</sub>+ΣPt<sub>lep</sub>+ΣPt<sub>γ</sub> HT describes the visible energy in a pp→Susy particles interaction





# **Single Lepton**



| μ channel                 |                                   |  |
|---------------------------|-----------------------------------|--|
| Sig <sub>exp</sub>        | (LM0,100 pb <sup>-1</sup> ) ~ 400 |  |
| e channel                 |                                   |  |
| Sig <sub>exp</sub>        | (LM0,100 pb⁻¹) ~ 380              |  |
| <b>Bkg</b> <sub>exp</sub> | (100 pb⁻¹) ~ 160                  |  |

### **DiLeptons**

Selection:

- HT>350 GeV
- Number of leptons( $e,\mu,\tau$ ) >=2
- Ch(lep1)\*Ch(lep2)>0 for same sign (<0 for opposite sign)



Same sign

 $Sig_{exp}$  (LM0,100 pb<sup>-1</sup>) ~ 130

Bkg<sub>exp</sub> (100 pb<sup>-1</sup>) ~ 50

For opposite sign both signal and background are higher

#### **Background evaluation**

ttbar is the dominant background for leptonic susy searches



| N(tt) expected  | 16±2 |
|-----------------|------|
| N(tt) estimated | 18±2 |

Tau Fake Rate

Find a  $\tau$ -free control sample:

**Minimum bias events** 

(τ contamination ~0.1%)



Use fake rate map in final states with similar topology

michele.pioppi@cerh.ch

# Trigger issue

Two trigger strategies under investigation:

- Leptonic trigger
  More reliable at the start-up. Each final state must be triggered with a different trigger path.
- Hadronic trigger
  More efficient if the lepton spectrum is soft
   The efficiency is slightly dependent on the lepton flavor



# **Open question about selection**

- Theory:
  - Missing energy request (trigger and/or reconstruction) implies the presence of an invisible LSP
  - In order to have an observable related to the energy scale of Susy processes, What is the most correct definition for HT? Should photons, leptons, MET be included?
  - HT: a request on the visible energy produced in the Susy particles decay implies the fraction of energy to invisible particles is low
- Experimental issue:
  - Lepton pt range: below certain pt threshold the possibility to measure fakes from data becomes hard

# Dilepton opposite sign: the edge measurement



In some SUSY models the dilepton (opposite sign same flavor) invariant mass is the difference in mass between 2 susy particles.



# What can we learn from SSDL?

- Find the compatible SUSY scenarios by looking at relative yields in the 6 dilepton same sign final states
  - Under the assumption of SSDL from same sign charginos, the relative yield in the 6 final states is proportional to the Br( $\chi^+ \rightarrow I_1 + X$ )\* Br( $\chi^+ \rightarrow I_2 + X$ )
  - Can we associate the relative yield (e.g N( $\tau\mu$ )/N( $\mu\mu$ )) to some fundamental parameters of SUSY models?
- (++) (--) events gives access on the relative production of squark and antisquark (dependent on the LHC energy)

### Conclusions

- The 3 analyses are promising and can see new physics (or exclude models) with 100 pb<sup>-1</sup>
- A common approach guarantees the consistence of results
- Bkg evaluation from real data is the key of these analyses
- Do the cuts applied favor some SUSY models or scenario?
- What else can we learn from leptonic SUSY analyses?