Introduction	Dijet searches	From dijets to n-jets 00000	Results and discussion	Conclusior
A k ba	inematics ckground	-based appro rejection in searches	bach to fake M LHC dark mati	IET ter

Rob Bainbridge¹ Oliver Buchmüller¹ Henning Flächer² Jad Marrouche¹ Tanja Rommerskirchen³ Markus Stoye¹ Alex Tapper¹ Tom Whyntie¹

¹Imperial College London, UK

²CERN

³Universität of Zürich

Joint IPPP/IC Workshop, May 28, 2009

Introduction	Dijet searches	From dijets to n-jets	Results and discussion	Conclusions
Outline of the talk				

- Outline of the talk
- Dark matter searches at the LHC
- Dijet searches
 - Dijet Searches at the LHC
- 3 From dijets to n-jets
 - Generalising the observables
 - Other jet multiplicities
 - Results and discussion
 - Results
 - Discussion some caveats

5 Conclusions

The role of	$\underline{\mathcal{E}}_{\tau}$ in dark r	natter searches				
Dark matter searches at the LHC						
Introduction	Dijet searches	From dijets to n-jets	Results and discussion	Conclusions		

Real \mathcal{E}_T

- Arises from SM processes involving neutrinos.
- Irreducable: must be estimated using MC or (preferably) data-driven methods.

Fake \mathcal{E}_T

- Detector-based (mismeasurement, noise) and external (beam halo, cosmics). Will require a thorough understanding of our detector.
- Can we use event kinematics to protect "on-the-fly"?

Introduction	Dijet searches ●○	From dijets to n-jets	Results and discussion	Conclusions		
Dijet Searches at the LHC						
Dijet Searches for Supersymmetry at CMS						

Randall and Tucker-Smith [Randall 2008]

Proposed a search based on the kinematic properties of the dijet system only, using $\Delta \phi(j1, j2)$, mT2 [Lester 1999], and

$$\alpha = \frac{E_T^{j2}}{M^{j1,j2}}$$

(1)

CMS Dijet Search [CMS PAS SUS-08-005]

Developed the approach, using instead the more effective

$$\alpha_T = \frac{E_T^{j2}}{M_T^{j1,j2}}$$

(2)

where M_T is the transverse mass of the dijet system.

Introduction	Dijet searches ⊙●	From dijets to n-jets	Results and discussion	Conclusions
Dijet Searches at the L	_HC			

The dijet search illustrated

$\alpha \tau$ in term	ns of generic	variables - I		
Generalising the o	bservables			
Introduction	Dijet searches	From dijets to n-jets ●○○○○	Results and discussion	Conclusions

Ideally, we would like to consider events with *n*-jets. The first step: generalise the components of α_T for *n* objects.

The denominator

This is straightforward to define in terms of the "Tevatron variables" H_T and $\mathbf{h}_T = -\mathbf{h}_T = -\sum \mathbf{p}_{T(i)}$:

$$M_{T(N)} = \sqrt{(\sum E_{T(i)})^2 + (\sum \mathbf{p}_{T(i)})^2}$$
(3)

$$= \sqrt{H_T^2 + h_T^2}$$
 (4)

Note that the E_T of the objects are added before squaring. This has implications when combining objects together...

Introduction	Dijet searches 00	From dijets to n-jets o●ooo	Results and discussion	Conclusions		
Generalising the observables						
α_T in term	ns of generic	variables - II				

The numerator

Consider a mismeasured QCD dijet event:

For the dijet system, we define

$$H_T = E_T^{j1} + E_T^{j2}$$
 and $\Delta H_T = E_T^{j1} - E_T^{j2}$ (5)

and notice that

$$E_T^{j2} = \frac{1}{2} \left(H_T - \Delta H_T \right) \tag{6}$$

So α_T incorporates a "handle" on the dijet mismeasurement.

a- in torn	ne of gonorio	variables - III		
Generalising the o	bservables			
Introduction	Dijet searches	From dijets to n-jets oo●oo	Results and discussion	Conclusions

Putting it all together...

$$\alpha_{T} = \frac{1}{2} \frac{H_{T} - \Delta H_{T}}{\sqrt{H_{T}^{2} - M_{T}^{2}}}$$
(7)
$$= \frac{1}{2} \frac{1 - \frac{\Delta H_{T}}{H_{T}}}{\sqrt{1 - \frac{M_{T}^{2}}{H_{T}^{2}}}}$$
(8)

- For a perfectly measured event with no real \mathcal{E}_T , $\alpha_T = 0.5$.
- Real \mathcal{F}_{T} decreases the denominator, pushing α_{T} beyond 0.5.
- Any E_T imbalance (i.e. mismeasurement) in the dijet system is naturally protected against in the numerator.

Assumption alert: assumes the event should be evenly split!

Introduction	Dijet searches	From dijets to n-jets ○○○●○	Results and discussion	Conclusions
Other jet multiplicities				
Trijet events	;			

The question is, how do we define ΔH_T for *n* object systems?

- Choosing the combination with the smallest ΔH_T picks out the most "balanced" configuration by construction.
- We add the E_T of each object so that M_T is the same for every combination.
- $\alpha_T = 1/3$ for an "equilateral" event an exercise for the reader.

For the three jet case, the most balanced combination is always $\{1, 23\}$, resulting in $\alpha_T = E_T^{j1}/M_T$. This is not the case for $n \ge 4$:

 α_T for *n*-objects

$$\alpha_T = \frac{1}{2} \frac{H_T - \min \Delta H_T}{\sqrt{H_T^2 - M_T^2}}$$

(9)

Introduction	Dijet searches	From dijets to n-jets	Results and discussion ●○	Conclusions
Results				
Results for	r 2-6 jet even	ts (inclusive)		

Unofficial CMS plot - for your eyes only.

"Standard" *n*-jet preselection, with $H_T > 350 \text{ GeV}$, 2 – 6 jets inclusive. Sharp edge for QCD (fake \mathcal{F}_T), "leakage" from real \mathcal{F}_T - as you'd expect.

Introduction	Dijet searches	From dijets to n-jets	Results and discussion ○●	Conclusions
Discussion - some	e caveats			
Some cav	veats			

Beware of model/parameter space

- Masses of NLSP/LSP may affect usefulness of such observables.
- Long-chain cascades lead to small MHT/HT ratios.

"Catastrophic mismeasurements"

- α_T effective when one jet is mismeasured but not two.
- Studies underway...

$\alpha_{\mathcal{T}}$ should complement calometric $\sum \textit{E}_{\mathcal{T}}$ and $\not\textit{E}_{\mathcal{T}}\text{-based}$ searches

- By design, we do not use full detector information...
- We need to further understand the limitations of the primary object approach.

- We present a complementary technique for \mathcal{E}_T -based searches for dark matter at the LHC.
- α_T is an observable designed to reject fake *E_T* backgrounds (e.g. QCD) based on kinematics and simple physical assumptions.
- We have extended α_T from a dijet-only to an inclusive *n*-jet topology search, which may make SUSY discoveries possible with a few 100pb⁻¹ of data.
- It is not a "magic bullet" terms and conditions apply!

Thank you for listening

Back-up ●●○○

For further reading

Bibliography I

- L. Randall & D. Tucker-Smith: Dijet Searches for Supersymmetry at the LHC, Phys. Rev. Lett. 101 221803 (2008)
- C. Lester & D. J. Summers: Measuring masses of semi-invisibly decaying particle pairs produced at hadron colliders, Phys. Lett. B 463 99 (1999)
- H. Flaecher, J. Jones, T. Rommerskirchen & M. Stoye: SUSY search with dijet events, CMS PAS SUS-08-005 (2008)

Back-up ●●○○

For further reading

D0 Collaboration:

Search for squarks and gluinos in events with jets and missing transverse energy... Phys. Lett. B 660 449 (2008) Dijet Searches at the Tevatron

Current limits from the Tevatron (D0) Dijet Searches

- 2.1 fb⁻¹ integrated luminosity at $\sqrt{s} = 1.96 \,\text{GeV}$.
- Nothing seen so far!
- 95 % C.L. lower limits of 379 GeV and 308 GeV set on the squark and gluino masses respectively.
- Regime probed: $\tan \beta = 3$, $A_0 = 0$, and $\mu < 0$.

The primary object approach

Whole detector or "primary objects"?

Observables like α_T are a departure from traditional methods.

Whole detector - Calometric $\sum E_T$ and \mathcal{F}_T

- Takes into account everything observed more accurate.
- Will take time to understand.

"Primary object" approach

Characterise the event in terms of the physics objects present.

- Objects must pass quality cuts, e.g. E_T , p_T , isolation, etc.
- Then calculate event observables using these objects.
- Introduces a new source of fake $\mathcal{F}_{\mathcal{T}}$ "Resolution".
- Objects must the "cross-cleaned" to avoid double counting.