

IPPP Hadron and Photon Analysis

Markus Stoye¹, Henning Flacher², Tanja Rommerskirchen³, Tom Whyntie¹, Rob Bainbridge¹, Jad Marrouche¹

Imperial College¹, CERN², Universität of Zürich³

IPPP - Workshop 28.5.09

Introduction

- Search strategies priorities.
- Hadronic searches in CMS with focus on IC involvement.
- Main selection variables.
- Data driven background (example).

The content is "private" in the sense that plots are not CMS approved plots.

Search Strategies

Main Priorities:

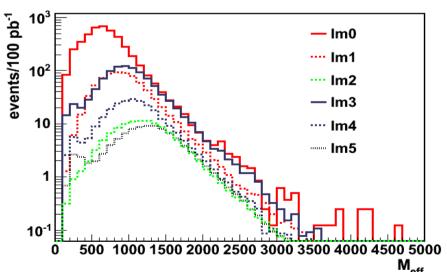
- To be in a region of phase space where we can control our SM background:
 - → SM reduction
 - → Data-driven estimates of background (control sampels, regions)
- To be as model independent as possible.

However:

- We need to define signal regions where we have to control the SM background.
- We need some sort of SUSY-signal efficiency to define success of a search.

For both we need some sort of manageable SUSY MC, which might contradict the model independence to some extend.

Benchmark points


Sample	m_0	$m_{1/2}$	A_0	$\tan \beta$	sign(μ)	σLO	lightest q	χ_1^0
-	(GeV)	(GeV)				(pb)	(GeV)	(GeV)
LM0*	200	160	-400	10	+	110	$207 (\tilde{t}_1)$	60
LM1	60	250	0	10	+	16.1	410 (\tilde{t}_1)	97
LM2	185	350	0	35	+	2.4	582 (\tilde{t}_1)	141
LM3	330	240	0	20	+	11.8	446 (\tilde{t}_1)	94
LM4	210	285	0	10	+	6.7	483 (\tilde{t}_1)	112
LM5	230	360	0	10	_ +	1.9	603 (\tilde{t}_1)	145

*ATLAS BMP 4

$$HT = \Sigma P_{T}$$

$$MHT = |\Sigma \overrightarrow{p}_{T}|$$

$$M_{eff} = MHT + HT$$

Typically main characteristic used in searches. (large mass differences)

Hadronic Searches

Major IC involvement

- No electron, muons or photons.
- $|\eta|$ jets < 3 && $P_T > 50$ GeV.
- 2 or more jets.
- 2^{nd} jet $P_T > 100$ GeV. (EW suppression)
- $|\eta|$ first jets < 2.
- HT = $\Sigma P_{T} > 350 \text{ GeV}$.
- $\alpha_{\rm T} > 0.55$ (QCD suppression: topological variable)
- → Eventually more robust against QCD.
- → Includes dijets (only dijet public so far)
- → Uses topological variable
- $\rightarrow \alpha_{_{\rm T}}$ dependents on ratios (MHT/HT)
- → Also applicible for photon+jet search.

Partial IC involement

- No electron, muons or photons.
- 1st jet $P_T > 180 \text{ GeV}; 2^{nd} \text{ jet } P_T > 110 \text{ GeV}, 3^{rd}$ Jet $P_T > 50 \text{ GeV}$ (EW suppression);
- 3 or more jets.
- MHT (MET) > 200 GeV
- $|\eta|$ first jets < 2.5
- angular cuts for QCD suppression: checks if met is aligned to a jet.
 - → Higher signal (LMX) efficiency
 - → Details in PTDR.

Selection Variables: α_{τ}

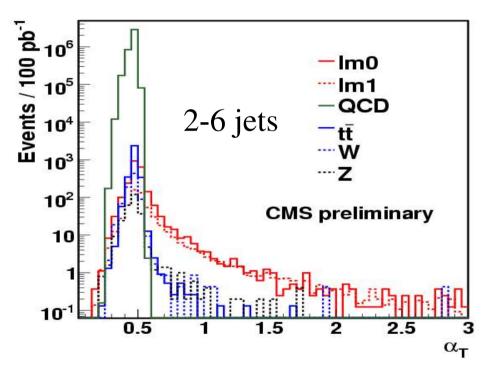
CMS-PAS SUS08-003 and Phys. Rev. Lett vol. 101, p. 221803 2008,

Two pseudo jets are formed which balance each other as good as possible in the "pseudo-jet" $H_T = \sum E_T$, where the E_T are from the jets of the pseudo jet. This way of construction the pseudo dijet system showed to have similar properties like a real dijet system.

$$M_T(j_1, \dots, j_i, \dots, j_n) = \sqrt{\left[\sum_{i=1}^n E_T(j_i)\right]^2 - \left[\sum_{i=1}^n p_x(j_i)\right]^2 - \left[\sum_{i=1}^n p_y(j_i)\right]^2}$$

$$\alpha_{\rm T}$$
= 0.5 $\frac{H_{\rm T}$ - $\Delta H_{\rm T}}{M_{\rm T}}$,where $\Delta H_{\rm T}$ = $H_{\rm T.1}$ - $H_{\rm T.2}$

$$\alpha_{\rm T} = 0.5 \frac{1 - \Delta H_{\rm T}/H_{\rm T}}{\sqrt{1 - MHT^2/H_{\rm T}^2}}$$
, MHT and $\Delta H_{\rm T}$ occur relative to $H_{\rm T}$

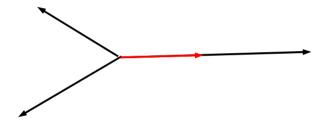


Selection Variables: α_{τ}

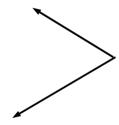
after all cuts but α_{T} :

$$HT > 350 \text{ GeV}$$

350 GeV > HT > 250 GeV


- Cut values at 0.55.
- The tails are literally QCD empty.
- Is "250 GeV < HT < 350 GeV" potential signal or background region?

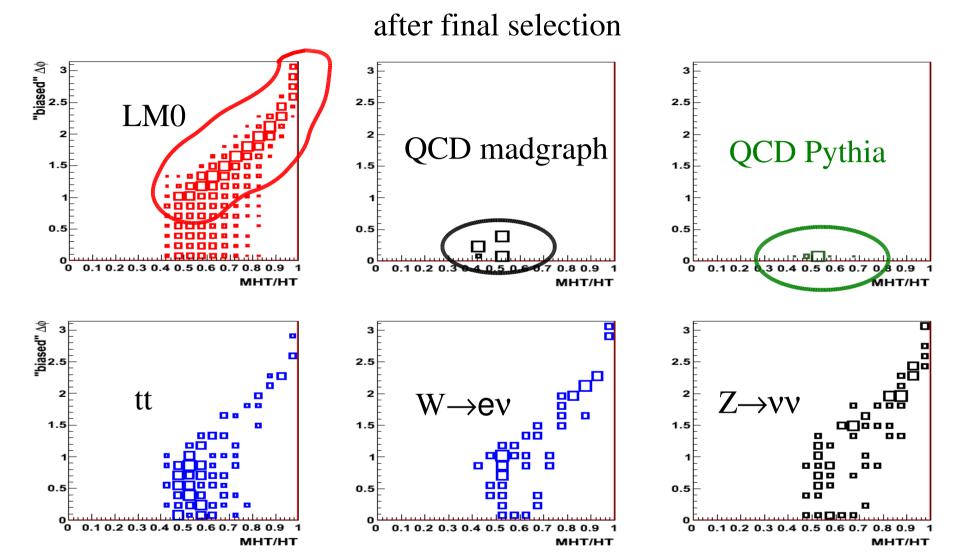
Other Variables (for Control)


"biased"
$$\Delta \phi = \min_{k} \left(\Delta \phi \left(\left(\sum_{i=0}^{n} -\vec{j}_{i} \right) + \vec{j}_{k}; \vec{j}_{k} \right) \right)$$

For QCD:

Checks if there would be a jet that, if rescaled, balances the event.

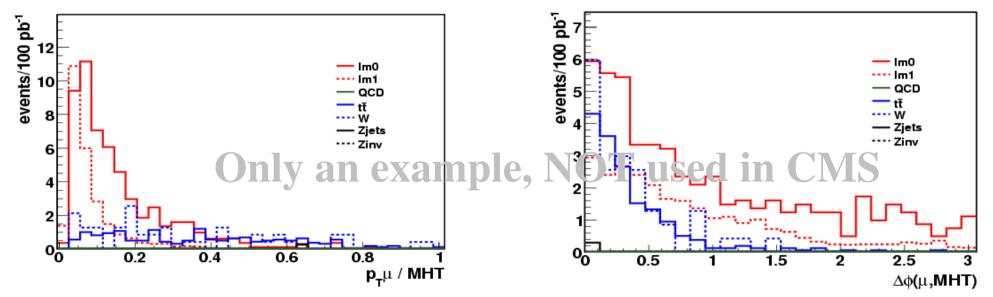
For true MET:


If $\Delta \phi$ is large, then the jet are close in ϕ and MHT/HT is large.

Other variables:

- $\Delta \phi$ between hemispheres seeded by transverse thrust axis.
- $\Delta \phi$ transverse thrust axis to MHT.

Control Plots


QCD events are in "typical" region.

SUSY "contamination" in Control Samples

Applying all cuts and require for a single isolated muon would be a nice control sample:

- Dominantly semi-leptonic tt, W+jets remain from SM.
- Only SM with W of few 100 GeV (~ MHT) remain.
- Muon momentum stems dominatly from W boost.

- Clear shape expectation for SM.
- SUSY amplitude and shape very model dependent.
- Adds complexity to the model dependence.

Selection: Final Selection

2-6 jet cut flow:

Selection cut	QCD	Z nunu	W lnu	tt	Z+jets	LM1	LM0
pre-selection	2.2x10^7	690	2479	3547	265	630	3011
HT > 350 GeV	5.2x10^6	305	960	2660	100	605	2757
$\alpha_{\mathrm{T}} > 0.55$	10.9	12.8	15.4	10.3	0.3	169	335
MHT _{ratio} < 1.25	2.4	12.8	15.4	9.1	0.3	168	321

Most important : There is discovery potential.

Would be nice to design searches such, that such statements are not too model dependent.

- Presented typical variables used in hadronic searches.
- Are there more general variables, which should decrease the model dependence derived from theoretical principles?
- A question valid for all variables from 2^{nd} jet P_{T} to α_{T} ...
- Model dependence also effects data-driven background estimation methods.

We have potential to discover SUSY in the hadronic channel with few 100 pb⁻¹.