

Lattice QCD

Role of LQCD in the future programme

Jonathan Flynn School of Physics & Astronomy University of Southampton

PPAP Community Review: Flavour-changing Physics & QCD Birmingham, 13 July 2009

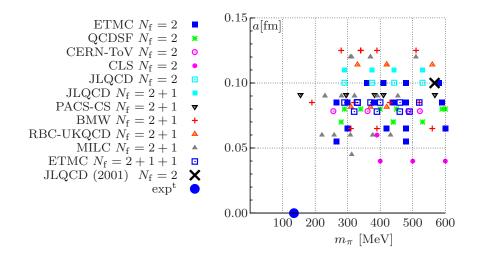
Contents

Lattice landscape

Lattice kaon physics

 f_K/f_π and K_{I3} Neutral Kaon mixing: B_K

Heavy quarks


Decay constants Semileptonic decays *B* mixing and decay Rare *B* decays Complementary approaches to *b*-physics

Stress-testing LQCD

Theoretical/computational/people

QCD and beyond

Lattice landscape

Herdoiza private comm

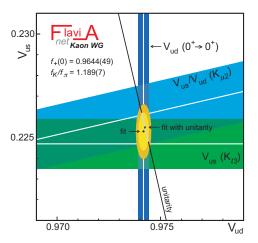
Lattice kaon physics

High precision

Unitarity of first row of CKM matrix and quark-lepton universality

$$f^+_{K^0\pi^-}, f_K/f_\pi$$

- Precision
 - CP violation in neutral kaon mixing in SM and beyond


 B_K and BSM matrix elements

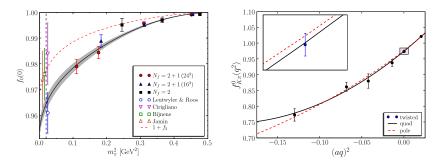
Exploratory

- $\Delta I = 1/2$ rule
- Direct CP violation in $K \to \pi\pi$ and Re (ϵ'/ϵ)

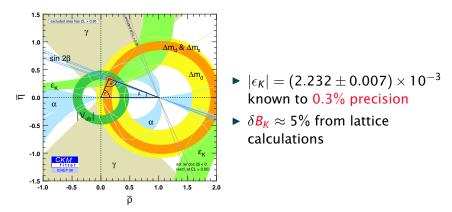
$|V_{us}|$

- ► f_K/f_π and K_{I3} provide best lattice constraints on |V_{us}|
- Involve SU(3)-breaking:
 20% in *f_K/f_π*, 4% in *f⁺_{Kπ}*(0)
- Precision K₁₃ studies more recent, but improving rapidly
 - ► high precision possible because f⁺_{Kπ}(0) − 1 is calculated
- Devil is in the systematic error estimation
- Around 1% precision now, aiming for 0.1% or better by 2012

f_{κ}/f_{π}


		N _f	<i>a</i> /fm	$M_{\pi}L$	$M_{\pi}/{ m MeV}$	f_{κ}/f_{π}
ETMC	ТМ	2	\geq 0.07	3.6	\geq 260	1.210(6)(15)(9)
NPLQCD	KS/DWF	2+1	0.13	3.7	\geq 290	$1.218(2)\binom{11}{24}$
MILC	KS	2+1	\geq 0.06	4	\geq 240	$1.197(3)\binom{6}{13}$
HPQCD	KS	2+1	\geq 0.09	3.8	\geq 250	1.189(2)(7)
RBC/UKQCD	DWF	2+1	0.11	4.6	\geq 330	1.205(18)(62)
ALV	KS/DWF	2+1	\geq 0.09	2.3	\geq 240	1.191(16)(17)
PACS-CS	NP-SW	2+1	0.09	2.3	\geq 160	1.189(20)
BMW	SW	2+1	≥ 0.065	\geq 4	\geq 190	1.18(1)(1)
PDG						1.193(6)

Summary table: Lellouch Lat08, Simula CKM2008, Boyle Kaon09


ETMC 0904.0954 MILC 0710.1118 HPQCD PRD73 (2006) 114502 RBC/UKQCD PRD78 (2008) 114509 PACS-CS Lat08 0811.2630 BMW Dürr Lat08

 $K \rightarrow \pi I \nu$: $f^+(0)$

		N _f	<i>a</i> /fm	$M_{\pi}L$	$M_{\pi}/{ m MeV}$	$f^{+}(0)$
JLQCD 05	NP SW	2	0.09	\geq 5	\geq 550	0.967(6)
RBC 06	DWF	2	0.12	\geq 6	\geq 490	0.968(9)(6)
QCDSF 07	NP SW	2	0.08	\geq 6	\geq 590	$0.965(2)(\cdot)$
ETMC 08 prel	tmW	2	0.09	\geq 4	\geq 260	0.956(3)(5)
FNAL/MILC 04	SQ	2 + 1				0.962(6)(9)
RBC/UKQCD 08	DWF	2 + 1	0.11	\geq 3	\geq 240	0.964(3)(4)(1)
Le	llouch Lat	t08, Simi	ula CKM2	2008, B	oyle Kaon0	9

Neutral Kaon mixing: B_K

In the standard analysis (Buras et al 1998)

$$|\epsilon_{\mathcal{K}}| \propto \mathbf{B}_{\mathcal{K}} |\mathbf{V}_{cb}|^2 \left[|\mathbf{V}_{cb}|^2 (1-\bar{\rho})\eta_{tt} S(\mathbf{x}_t) + \eta_{ct} S(\mathbf{x}_c, \mathbf{x}_t) - \eta_{cc} \mathbf{x}_c \right]$$

... but $\delta |V_{cb}| \approx 2.5\%$ so $\delta |V_{cb}|^4$ also relevant

		N _f	<i>a</i> /fm	$M_{\pi}L$	$M_{\pi}/{ m MeV}$	Âκ
JLQCD	o'lap	2	0.12	2.7	\geq 290	0.734(5)(50)
ETMC	OS/TM	2	0.07	3.1	\geq 300	0.78(3)
HPQCD	KS	2 + 1	0.13	4.5	\geq 360	0.85(2)(18)
RBC/UKQCD	DWF	2 + 1	0.11	4.6	\geq 240	0.720(13)(37)
ALV	KS/DWF	2 + 1	\geq 0.09	\geq 2.5	\geq 230	0.724(8)(28)

Lellouch Lat08, Boyle Kaon09

JLQCD PRD77 (2008) 094503 ETMC Lat08 0810.2443 HPQCD PRD73 (2006) 114502 RBC/UKQCD PRL100 (2008) 032001 ALV arXiv:0905.3947

- Last two well-renormalised calculations are in remarkable agreement
- Renormalisation error becoming dominant; statistical and extrapolation errors will be subleading
- Error \sim 5% now; aim for 1% error

B-meson decay constants

Unquenched results have 5-7% precision today (0902.1815, 0903.3598)

	FNAL/MILC	HPQCD
f_{B_s}/MeV	243(11)	231(15)
$f_B/{ m MeV}$	195(11)	190(13)
f_{B_s}/f_B	1.25(4)	1.226(26)

New techniques developed in quenched simulations: 3-4% error

- interpolate HQET plus relativistic (~ charm) (ALPHA JHEP 0802(2008)078)
- finite volume step scaling (Rome II NPB672(2003)372)

 combine step-scaling + HQET (JHEP 0801(2008)076)

	$f_{B_s}/\operatorname{MeV}$
static + relativistic	193(7)
fin-vol step scaling	192(6)(4)
combined	191(6)

Aim for 2% precision by end 2012

D-meson decay constants

	N _f	$f_D/{ m MeV}$	$f_{D_s}/\operatorname{MeV}$	f_{D_s}/f_D
ETMC	2	197(7)(12)	244(4)(11)	1.24(4)(2)
FNAL/MILC	2 + 1	207(11)	249(11)	1.200(27)
HPQCD	2 + 1	207(4)	241(3)	1.162(9)
CLEOc		205.8(8.9)	259.5(7.3)	

- Best quoted errors already at 1-2% level
- Aim to reproduce with other light quark formulations and treatments of charm quark and get below 1% by 2012

Decay constants and new physics

- B, D and K all interesting
- New physics modifies coefficients of low-energy operators and introduces new operators
 - Example for f_{Ds}: exchange of particle with mass M generates (Dobrescu Kronfeld PRL100 (2008) 241802)

$$\frac{C_A^{\prime}}{M^2}\bar{s}\gamma_{\mu}\gamma_5 c\,\bar{\nu}_L\gamma^{\mu}I_L + \frac{C_P^{\prime}}{M^2}\bar{s}\gamma_5 c\,\bar{\nu}_L I_R + \mathsf{hc}$$

leading to $B(D_s \rightarrow l\nu) = R_{D_s}B(D_s \rightarrow l\nu)_{SM}$ with

$$R_{D_{s}} = \left| 1 + \frac{C_{A}^{l} + \frac{C_{P}^{l} m_{D_{s}}^{2}}{m(m_{c} + m_{s})}}{\sqrt{2}M^{2}G_{F}V_{cs}^{*}} \right|^{2}$$

 $(m_{H_{\pm}}, \tan \beta)$ constraints in 2HDMs

$$\blacktriangleright B \to \tau \nu$$

$$R_B = \left| 1 - \frac{m_B^2}{m_{H_{\pm}}^2} \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right|^2$$

Hampered by f_B and V_{ub} uncertainty

• $D_s \rightarrow \tau \nu$ and $D_s \rightarrow \mu \nu$

$$R_{D_s} = \left| 1 + \frac{m_{D_s}^2}{m_{H_{\pm}}^2} \frac{1 - (m_s/m_c) \tan^2 \beta}{(1 + m_s/m_c)(1 + \epsilon_0 \tan \beta)} \right|^2$$

Most constraining at present (asuming V_{cs} known): less if f_{D_s} goes up to ~ 250 MeV. Experimental errors dominate.

► K decays

$$\left|\frac{V_{us}^{K_{l2}}}{V_{us}^{K_{l3}}}\frac{V_{ud}^{0^+ \to 0^+}}{V_{ud}^{\pi_{l2}}}\right| = \left|1 - \frac{m_K^2}{m_{H_{\pm}}^2} \left(1 - \frac{m_d}{m_s}\right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta}\right|$$

 f_K/f_π and $f_{K\pi}^+(0)$ input: 1% errors important for constraint

$|V_{cb}|$

- Luke's theorem and use of double ratios allow good precision
- ▶ Errors approaching 2% for quantities $|\mathcal{F}(1)|$ in $B \to D^*$ and $|\mathcal{G}(1)|$ for $B \to D$ from FNAL/MILC. Combine with experimental $|\mathcal{F}(1)V_{cb}|$ and $|\mathcal{G}(1)V_{cb}|$:

$$|V_{cb}| = \begin{cases} 38.2(0.6)_{\text{expt}}(1.0)_{\text{thy}} \times 10^{-3} & B \to D^* \\ 39.5(1.5)_{\text{expt}}(0.9)_{\text{thy}} \times 10^{-3} & B \to D \end{cases}$$

- ► Application of step-scaling methods and twisted BCs have given 2% accuracy in |G(1)| from a nonperturbative calculation.
 - Quenched: extend to unquenched
 - ► Also calculated $\Delta^{B \to D}(\omega)$, parametrizing difference of $B \to D\tau\nu$ and $B \to De\nu$: independent of CKM, sensitive to NP
- Prospects good to aim for 0.5% theory error

Vub

- Experimental results for $|V_{ub}|f^+_{B\pi}(q^2)$ in q^2 bins
- Combine with lattice $f_{B\pi}^+(q^2)$ using a parametrization of the form factor, preferably model-independent (eg based on analyticity and unitarity)
- Recent results

$$|V_{ub}| = \begin{cases} 3.40(20)\binom{59}{39} \times 10^{-3} & \text{HPQCD quoted in 0903.3598} \\ 3.38(36) \times 10^{-3} & \text{FNAL/MILC 0811.3640} \end{cases}$$

- Approaching 10% accuracy for exclusive |V_{ub}|; aiming for 3% in late 2012.
- Discrepancy with inclusive $|V_{ub}|$
- $B \rightarrow \rho$ semileptonic decays could also be used

B mixing and decay

► $B^0 - \overline{B}^0$ mixing

Most recent lattice results at 3 to 4%:

$$\xi = \frac{f_{B_s}\sqrt{B_{B_s}}}{f_{B_d}\sqrt{B_{B_d}}} = \begin{cases} 1.258(33) & \text{HPQCD } 0902.1815\\ 1.205(52) & \text{FNAL/MILC prelim } 0903.3598 \end{cases}$$

HPQCD quote:

$$\frac{|V_{td}|}{|V_{ts}|} = \xi \sqrt{\frac{\Delta M_d M_{B_s}}{\Delta M_s M_{B_d}}} = 0.214(1)_{\text{expt}}(5)_{\text{lattice}}$$

- Aim for sub 1% precision in ξ by late 2012
- Lifetime differences

Rare **B** decays

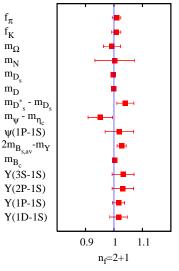
$\langle {\it P} ar{{\it q}} \gamma^\mu {\it b} {\it B} angle$	f^+, f^0	$egin{cases} {\sf B} o \pi {\sf I} u \ {\sf B} o {\sf K} {\sf I}^+ {\sf I}^- \end{cases}$
$\langle {\it P} ar{\it q} \sigma^{\mu u} {\it q}_{ u} {\it b} {\it B} angle$	fτ	$B \rightarrow K I^+ I^-$
$egin{array}{l} \langle m{V} ar{m{q}} \gamma^\mu m{b} m{B} angle \ \langle m{V} ar{m{q}} \gamma^\mu \gamma_5 m{b} m{B} angle \end{array}$	V A_0, A_1, A_2	$\begin{cases} \textbf{B} \to (\rho/\omega) I\nu \\ \textbf{B} \to K^* I^+ I^- \end{cases}$
$egin{array}{l} \langle m{V} ar{m{q}} \sigma^{\mu u} m{q}_ u m{b} m{B} angle \ \langle m{V} ar{m{q}} \sigma^{\mu u} \gamma_5 m{q}_ u m{b} m{B} angle \end{array}$	$T_1 \\ T_2, T_3$	$\begin{cases} \mathbf{B} \to \mathbf{K}^* \gamma \\ \mathbf{B} \to \mathbf{K}^* \mathbf{I}^+ \mathbf{I}^- \end{cases}$

- Semileptonic cases good if can work at high q^2
- Vectors in final state more difficult for chiral extrapolation since not strongly-stable
- $B \rightarrow K^* \gamma$ biggest challenge: need $q^2 = 0$
 - Investigation of moving NRQCD to increase q^2 range

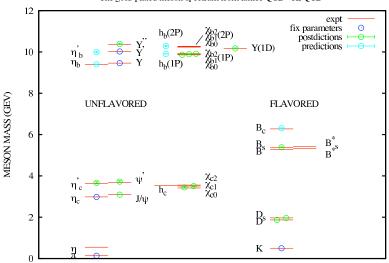
Lattice *b*-physics: complementary approaches

- Use relativistic quarks in charm region and extrapolate to b
- Effective theories
 - HQET: substantial progress in nonperturbative renormalisation, use of static-link fattening and inclusion of $O(\Lambda_{QCD}/m_b)$ corrections
 - NRQCD or Fermilab/Tsukuba (RHQ) actions
- Finite-volume and step-scaling approach of Rome-II group

$$\mathcal{O}(L_{\infty}) = \mathcal{O}(L_0) \frac{\mathcal{O}(L_1)}{\mathcal{O}(L_0)} \cdots \frac{\mathcal{O}(L_N)}{\mathcal{O}(L_{N-1})}$$


 L_0 small enough to allow $a \approx 0.01$ fm and $L_N \sim L_\infty$ (last factor is 1 to required precision)

b-physics prognosis


- ► Best results likely from combining extrapolation from $m_Q \approx m_c$ with effective theory results (including $\Lambda_{\rm QCD}/m_b$ corrections)
- ► Few % precision requires nonperturbative renormalisation
- Medium term: look for agreement between different approaches (HQET, NRQCD, Fermilab/Tsukuba) and study theoretical foundations
- Although quenched approximation has been banished from light quark physics, some heavy quark analysis still being developed using quenched ensembles: redo unquenched once methods established

Stress testing LQCD?

- Every new ensemble requires study of light hadron spectrum, f_K , f_π
- Many checks in spectroscopy, masses and splittings
- $\Delta I = 1/2$ rule and ϵ'/ϵ
 - ► LO ChPT with $K \rightarrow \pi$ and $K \rightarrow |0\rangle$ matrix elements is not sufficient
 - ► Need $K \rightarrow \pi\pi$ matrix elements: has spurred theoretical developments; computations underway
- ► $B \rightarrow M_1 M_2$ on the lattice needs new ideas
- Turn question around to test ChPT: LECs

Davies 0807.1402; see also MILC 0903.3598

The gold-plated meson spectrum from lattice QCD - HPQCD

plot from Davies HPQCD

Lattice calculations of LECs

- $SU(2)_L \times SU(2)_R \text{ vs } SU(3)_L \times SU(3)_R$
- ► SU(2) LECs (Necco 0901.4257; FLAG [Colangelo] Kaon09)
 - $\bar{\ell}_3$ and $\bar{\ell}_4$ from m_π^2 and f_π
 - $\bar{\ell}_6$ from pion electromagnetic form factor (charge radius)

	N _f	$\bar{\ell}_3$	$\bar{\ell}_4$	$\bar{\ell}_6$
CERN/TOV	2	3.0(5)(1)	4.1(1)(·)	
JLQCD/TWQCD	2	$3.38(^{56}_{47})$	$4.12(_{46}^{56})$	11.9(7)(10)
ETMC	2	3.42(30)	4.59(14)	
ETMC	2	3.2(4)(2)	4.4(1)(1)	14.9(12)(7)
PACS-CS	2+1	3.14(23)	4.04(19)	
RBC/UKQCD	2+1	3.13(33)(24)	4.43(14)(78)	12.2(9)
Gasser Leutwyler	phen	2.9(2.4)	4.3(9)	
Colangelo et al	phen		4.4(2)	
Bijnens et al 98				16.0(5)(7)

Theoretical

- UK groups linked to three international collaborations using three different formalisms
 - ETMC: twisted mass
 - HPQCD: staggered
 - RBC/UKQCD: domain wall

collaborations leverage resources

- Nonperturbative renormalisation
- Chiral extrapolation: SU(2) versus SU(3)
- Making better use of configurations: stochastic propagators, wall sources, one-end trick for spatial averaging; multiple sources
- Working with arbitrary momenta: twisting and partial twisting
- Improved actions and operators
- Effective actions for heavy(ier) quarks: HISQ, static, NRQCD, RHQ

Computational cost

- Dramatic algorithmic improvement in C21: improved scaling
- Good idea of needed resources for target simulations
- Europe, US, Japan: access to 10-100 Tflops now, 0.5-1Pflops 2010-2012
- ► HPC bid submitted April 2007; PPRP recommended ≈ £7M funding for UKQCD 21 months ago.
 - ► Would get us to ~ 0.4 Pflops in 2011–2012
 - Still awaiting final outcome

Target light quark simulation aiming at 1% error				
N _{conf}	120			
а	1/20 fm			
<i>a</i> ⁻¹	pprox 4 GeV			
m_l/m_s	1/12			
m_{π}	200 MeV			
L	4.5 fm			
Vol	$90^3 imes 180$			
Wilson	0.1 Pflops yr			
DWF	1.5 Pflops yr			

People power

- UK in credit from recent past (eg QCDOC) but now relying on manpower contributions and theoretical input
- Community needs access to machines to maintain international collaborations and to entice new blood

QCD and beyond

- New physics via matrix elements of additional quark and gluon operators at low energies
- hot and dense
 - QCD transport coefficients (viscosity, conductivity, ...) and validity of the hydrodynamic description at RHIC/ALICE
 - Nature of ultradense baryonic matter: deconfined, superconducting, can it be found in our universe? Difficult (sign problem) but indirect attacks via 2-colour QCD and complex Langevin simulation
- Lattice BSM: explore strongly-interacting QFTs that might help us interpret LHC results
 - SU(N) for any N with quarks in arbitrary representations: new technicolor, orientifold-planar equivalence (SUSY ↔ non-SUSY at large N)
 - supersymmetry

Summary: targeted precision

Quantity	СКМ	Hadronic ME	Error
f_{κ}/f_{π}	$ V_{us} $	f_{κ}/f_{π}	< 0.1%
$K o \pi I u$	$ V_{us} $	$f^+_{K\pi}(0)$	< 0.1%
ϵ_K	Im V_{td}^2	B _K	1%
$D_{(s)} \rightarrow I u$	$ V_{cd} , V_{cs} $	$f_{D_{(s)}}$	< 1%
$B \rightarrow I \nu$	$ V_{ub} $	f _B	2%
Δm_d	$ V_{td} $	$f_{B_d}\sqrt{B_{B_d}}$	2%
$\Delta m_d / \Delta m_s$	$ V_{td}/V_{ts} $	ξ	0.8%
${\it B} ightarrow {\it D}^{(*)} {\it I} u$	$ V_{cb} $	$F_{B \rightarrow D^{(*)} I \nu}$	0.5%
${\it B} ightarrow \pi {\it I} u$	$ V_{ub} $	$f^+_{B\pi}(q^2)$	3%
$B \rightarrow [K^{(*)}, \rho][\gamma, I^+I^-]$	$ V_{td}/V_{ts} $	T_1 etc	4%