Lepton Universality and Lepton Flavour Violation

Fergus Wilson RAL/STFC UK Strategy on Flavour Changing Physics and QCD

13th July 2009

Outline

- Motherhood and Apple Pie.
- Experimental Measurements by decay
 - \square muon anomalous magnetic moment, a_{μ}
 - $\hfill \ \mu {\rightarrow} e \gamma \ and \ \mu N {\rightarrow} e N \ conversion$
 - Kaon decays
 - \Box τ decays
 - Charm decays
 - Y(nS) and B decays
- Not discussed in any depth
 - □ V_{us} , Form Factors, $\alpha_s(M_\tau)$
 - Experimental details (see following talks)

Declaration of Interest

- I am a member of BaBar (R.I.P.) and LHCb.
- I've signed SOIs for SuperB and LHCb upgrade.
- I've participated in discussions on UK NA62 involvement.

The importance of Charged LFV

- Charge Lepton Flavour Violation (CLFV) is not a fundamental symmetry of the Standard Model (SM).
- Even with neutrino oscillations, SM LFV BF is ~ $(M_{\nu}/M_{W})^4$ ~ 10⁻⁵⁴. Compare with Quark Flavour Violation (QFV) which scales with log(m_q).
- Nearly all BSM theories have a LFV component.
- Even Minimal Quark Flavour Violating models (QFV comes from the SM sector only) have a LFV component.
- Experiments are already eliminating models and/or parameter space e.g. in $\tau^+ \rightarrow l^+l^-l^+$ MFV BF predictions <10⁻⁸, experimental upper limits <10⁻⁸.
- CLFV decays are much cleaner theoretically and experimentally than QFV:
 - Lepton decays (very few hadrons to worry about).
 - Final state is often all charge tracks.
 - Minimal non-perturbative QCD calculations needed.

The importance of Charged LFV

- Very high precision in some theory and experiment e.g. muon g-2 at 0.5ppm.
 - A driver to improve theoretical calculations and Lattice QCD.
 - A driver of experimental and accelerator techniques.
- Essential to understand the flavour properties of the Higgs and SUSY. A vital cross-check and complementary measurement to the LHC.
- If the Higgs/SUSY not found (or find hierarchy of new particles beyond 1TeV) then need to look at loop processes to probe higher mass scales (1-100 TeV).
- LFV is can also effected by GUT-scale processes e.g. heavy υ in SeeSaw models.
- All BSM models have a different hierarchy of predictions for various LFV decays. It is therefore vital to make as wide a range of LFV measurements as possible.

<u>g</u>-2

g-2: Anomalous μ Magnetic Moment a_{μ}

- Muon a₁ ≠ 0 due to radiative corrections; could come from BSM particles.
- Muon anomaly ~750 x e anomaly but more susceptible to heavy virtual particles ~ $(m_I/M)^2$.
- Connection to LFV in SUSY slepton mixing

13th July 2009

g-2: BSM models and LHC

13th July 2009

•Can already discriminate between various models and parameter space.

•Can be combined with LHC measurements to constrain parameter space

g-2: Predictions and Results

	$a_l^{SM} = a_l^{QED} + a_l^{had,LO} + a_l^{had,HO} + a_l^{weak}$		
	$a_{\mu}^{QED} = (116584718.09 \pm 0.14) \times 10^{-11}$		a_{μ}^{ha}
	$a_{\mu}^{had,LO} = 6901 \pm 42 \pm 19 \pm 7$		
	$a_{\mu}^{had,HO} = -97.9 \pm 0.9 \pm 0.3$		R (
	$a_{\mu}^{weak} = 154 \pm 2 \pm 1$		
	$a_{\mu}^{SM}[\tau] = 11659192.6 \pm 4.1 \pm 2.6 \pm 0.2$	2	
	$a^{SM}[a^+a^-] = \int 11659177.3 \pm 4.3 \pm 2.6 \pm 0.$	2	
	$a_{\mu} \ [e \ e \]^{-} \ (11659178.3 \pm 5.0 \pm 2.6 \pm 0.)$	2	
	$a_{\mu}^{\exp} = 11659208.0 \pm 6.3$		

 $a_{\mu}^{\exp} - a_{\mu}^{SM} = \begin{cases} 15.4 \pm 8.0(\tau) \\ 30.7 \pm 8.1 \,(e^+e^- \text{ with KLOE}) \\ 29.7 \pm 8.5 \,(e^+e^- \text{ w/o KLOE}) \end{cases}$

 -297 ± 56

 0 ± 63

-700

BNL-E821 (average)

-600 -500

-400

-300 -200

-100

1.7-3.00 deviation: Δa could be explained by SUSY $a_{\mu} - a_{\mu}^{exp}$ 13th July 2009Fergus Wilson, RAL. LFV and LU

9

0

100

 $\times 10^{-11}$

g-2: The Future

- Currently
 - Experimental accuracy 0.46 (stat)+/- 0.28 (syst)= 0.54 ppm (4.4×10⁻¹⁰)
 - □ Theory accuracy ~0.6 ppm (~6×10⁻¹⁰)
 - Lattice accuracy ~1.5 ppm: a_{μ} (had,LO) = (715±15)× 10⁻¹⁰ (from 2007, MILC)
- Near Future 2012:
 - ISR analyses from BaBar/Belle (see EPS09 possibly)
 - Resonance scans BaBar/Belle
 - KLOE-2
 - VEPP-2000: up to sqrt(s) = 2 GeV
 - BES III tau-charm factory
 - Total error by 2012: Reduce error by factor 2 to 3.0x10⁻¹⁰?
- Further Future:
 - SuperB/BelleII
 - ISR and resonance scans.
 - □ E821->E989
 - Double statistics but then need more muons to be feasible.
 - JPARC/E989/Project X
 - Aim for 0.1(stat) +/-0.07 (syst) ppm
 - Reduce total error by another factor 2 -> 1.5 × 10⁻¹⁰
 - Need more muons -> MICE
 - Possibility to measure muon EDM. Sensiitivity 10^{-19} e cm $\rightarrow 10^{-22}$ - 10^{-24} e cm

$\begin{array}{c} \mu \rightarrow e\gamma \text{ and} \\ \mu N \rightarrow eN \end{array}$

$\mu \rightarrow e\gamma$ and $\mu N \rightarrow eN$ conversion

- CLFV very rare in SM ~ 10⁻⁵⁴
- SUSY-GUT models etc... can enhance this in μ →e to 10^{-15} 10^{-11} e.g.

$$B^{GUT}(\mu \to e\gamma) = \frac{\alpha^3 \pi \theta_{\tilde{e}\tilde{\mu}}^2}{G_F^2 \tilde{m}^4}$$

Experimental Advantages
 High Muon Flux
 Leptonic Decay process

µ→e: The Future

Experiment	Where	Mode	Limit	Date	Status
SINDRUMII	PSI	$\mu^-Au \to e^-Au$	$< 7.0 \times 10^{-13}$	2001	Finished
MEGA	LAMPF	$\mu^- \rightarrow e^- \gamma$	$<1.2\times10^{-11}$	1999	Finished
MEG	PSI	$\mu^- \rightarrow e^- \gamma$	$< 10^{-13}$	2009 – 2011	Starting
COMET	JPARC	$\mu^{-}Al \rightarrow e^{-}Al$	$< 10^{-16}$	2016-?	Proposed
Mu2e	FermiLab	$\mu^{-}Al \rightarrow e^{-}Al$	$< 10^{-16}$	2018-?	Approved
PRISM	JPARC	$\mu^- Ti \rightarrow e^- Ti$	$< 10^{-18}$	2018-?	Proposed

- MEG starting to take data.
- Mu2e approved (but long-term funding uncertain?).
- UK interest:
 - COMET has CDR before JPARC PAC (June 09).
 - PRISM after COMET but has UK accelerator interest (muon, FFAG etc...)

Kaon decays

Kaon decays and ratios

- SM predictions (plus theoretical input and corrections) exist for:
 - **□ BF(M**⁻→l⁻ບ)
 - □ BF(K→Iπυ(γ))
 - □ BF(K⁻,π⁻→l⁻υ(γ))
- Charged Higgs will change the BF.
- LFV of a few % possible with reasonable parameters.
- Measure BF and ratios (ratios eliminate many theoretical uncertainties);

1.
$$R = K_{\mu 2(\gamma)} / \pi_{\mu 2(\gamma)} \rightarrow V_{us} / V_{ud}$$

2.
$$R_{K} = K_{e2(\gamma)} / K_{\mu 2(\gamma)} \rightarrow LU$$

•
$$\Delta r = R_k (exp) - R_k (SM) \rightarrow New Physics?$$

3.
$$r_{\mu e} = K_{\mu 3} / K_{e3} \rightarrow LU$$

4. $R_{123} = K_{\mu 2} / K_{\mu 3} \rightarrow LU$

13th July 2009

$$\frac{\overline{s}}{\pi} \qquad \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

V (Sneutrino)

K

U

п

Kaon: The Future

- KLOE 2 Step 0 (5-10 fb⁻¹)
 - Run with increased lumi from now.
 - $\hfill\square\hfill V_{us}$ error: 0.3% (now) $\rightarrow 0.17\%$
 - □ $1 |V_{us}|^2 V_{ud}|^2$ error: 7×10^{-4} (now) $\rightarrow 3 4 \times 10^{-4}$
 - □ R_{K} error: 1.3% (now) → 0.6% (in 5 fb⁻¹)?
- NA62-I
 - Data already in hand
 - □ R_{K} error: 0.7% (now) \rightarrow 0.4% (full dataset)
- NA62-II
 - **Construction 2009-2012**
 - Run 2012-2015
 - □ R_{K} error: 0.4% (NA62-I) \rightarrow 0.2%

t decays

т: LFV in т decays

- Many different BSM models and predictions to test
- Predicted rates are several orders of magnitude higher than μ rates

Model	$ au ightarrow \ell \gamma$	$ au ightarrow \ell \ell \ell$	Ref.
SM + lepton mixing	10^{-40}	10^{-14}	hep-ph/9810484
SM + left-h. heavy Dirac neutrino	$< 10^{-18}$	$< 10^{-18}$	SJNP25(1977)340
SM + right-h. heavy Majorana neutrino	$< 10^{-9}$	$< 10^{-10}$	PRD66(2002)034008
SM + left and right-h. neutral singlets	$< 10^{-8}$	$< 10^{-9}$	PRD66(2002)034008
mSUGRA + seesaw	$< 10^{-7}$	$< 10^{-9}$	hep-ph/0206110, hep-ph/9911459, etc
SUSY $SU(5)$	$< 10^{-4}$		hep-ph/0303071
SUSY flipped $SU(5)$	$< 10^{-7}$		hep-ph/0304130
SUSY $SO(10)$	$< 10^{-8}$	$< 10^{-10}$	hep-ph/0209303, hep-ph/0304190
SUSY anomalous $U(1)$	$< 10^{-7}$		hep-ph/0308093
neutral SUSY Higgs	$< 10^{-10}$	$< 10^{-7}$	hep-ph/0304081
charged SUSY Higgs triplet		$< 10^{-7}$	hep-ph/0209170
MSSM+nonuniversal soft SUSY breaking	$< 10^{-10}$	$< 10^{-6}$	hep-ph/0305290
Non universal Z' (technicolor)	$< 10^{-9}$	$< 10^{-8}$	PLB547(2002)252
two Higgs doublet III	$< 10^{-15}$	$< 10^{-17}$	hep-ph/0208117
extra dimensions	$< 10^{-11}$		hep-ph/0210021

13th July 2009

τ : Why look at τ LFV as well as μ ?

Rates are higher than µ

- Many BSM predictions already at experimental precision e.g. 31 decays measured at B Factories at ~ 10⁻⁸ level
- The τ and μ LFV predictions are often coupled

Some B-Factory $ au$ LFV measurements					
Channel	UL (90%)	Channel	UL (90%)		
$\mathcal{B} (\tau^+ \to e^+ e^- e^+)$	$2.9 imes10^{-8}$	$\mathcal{B} (\tau^- \to \mu^- K_s^0)$	$4.0 imes 10^{-8}$		
$\mathcal{B} (\tau^+ \to e^+ e^- \mu^+)$	$2.2 imes 10^{-8}$	${\cal B} \; (au^- ightarrow e^- K_{\!\scriptscriptstyle S}^0)$	$3.3 imes10^{-8}$		
$\mathcal{B} (\tau^+ \to e^+ e^+ \mu^-)$	$1.8 imes10^{-8}$	$\mathcal{B} (\tau^- \to \mu^- \omega)$	$1.0 imes10^{-7}$		
$\mathcal{B} (\tau^+ \to e^+ \mu^- \mu^+)$	$3.2 imes10^{-8}$	${\cal B} \; (au^- o e^- \omega)$	$1.1 imes10^{-7}$		
$\mathcal{B} (\tau^+ \to e^+ \mu^+ \mu^+)$	$2.6 imes10^{-8}$	$\mathcal{B} (\tau^- \to \mu^- \gamma)$	$4.5 imes10^{-8}$		
$\mathcal{B} (\tau^+ \to \mu^+ \mu^- \mu^+)$	$3.3 imes10^{-8}$	$\mathcal{B} (\tau^- o e^- \gamma)$	$12.0 imes10^{-8}$		
		${\cal B}~(au^- ightarrow e^- \eta)$	$9.2 imes10^{-8}$		
		${\cal B} \ (au o \mu^- \eta)$	$6.5 imes10^{-8}$		
$\mathcal{B} \ (au o e \phi)$	$3.1 imes10^{-8}$	${\cal B} \ (au o \mu \phi)$	$19.0 imes10^{-8}$		
$\mathcal{B} (au o e ho)$	$4.6 imes10^{-8}$	$\mathcal{B} (\tau \to \mu \rho)$	$2.6 imes10^{-8}$		
${\cal B} \; (au o e {\cal K}^*)$	$5.9 imes10^{-8}$	${\cal B}~(au ightarrow \mu K^*)$	$17.0 imes10^{-8}$		
${\cal B} \ (au ightarrow e \overline{K}^*)$	$4.6 imes10^{-8}$	$\mathcal{B} (au o \mu \overline{K}^*)$	$7.3 imes10^{-8}$		

13th July 2009

T: Lepton Universality and Charged Higgs

Compare to LU from Kaon decays, page 19

About factor 2 more accurate than Kaon modes.

13th July 2009

т: The Future

- Next 1-2 years
 - BaBar, Belle (~1.5×10⁹ tau pairs).
 - LHCb:
 - $\tau \rightarrow \mu \mu \mu < 1.2 \times 10^{-7}$ in 2 fb⁻¹
- Next ~5 years
 - ATLAS/CMS
 - T→μμμ (W-source) < 3.8×10⁻⁸ in 30 fb⁻¹
 - T→μμμ (W+Z-source) < 1-2×10⁻⁸ in 300 fb⁻¹
 - LHCb
- Next 10 years
 - SuperB/BelleII (~7.5×10¹⁰ tau pairs, 50-75 ab⁻¹)
 - T→μμμ < 1x10⁻⁹ -1x10⁻¹⁰
 - T→Iγ < 1×10⁻⁸ -1×10⁻⁹
 - T→lue LU at 0.02% (statistical).
 - LHC upgrade
 - LHCb: т→µµµ <1×10⁻⁸ in 100 fb⁻¹
 - ATLAS: Improved trigger + detector should extend $\tau \rightarrow \mu \mu \mu$ but work not yet complete
- Next 20 years
 - GLC and GigaZ

Charm

$$\begin{split} \mathbf{D}^{+}(\mathbf{s}) &\rightarrow \mathbf{I}^{+}\upsilon \text{ and Charged Higgs} \\ \Gamma(D_{(s)}^{+} \rightarrow l^{+}\upsilon) &= \frac{G_{F}^{2}}{8\pi} f_{D_{(s)}^{+}}^{2} m_{l}^{2} M_{D_{(s)}^{+}} \left(1 - \frac{m_{l}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2} \left|V_{c(d,s)}\right|^{2} \\ R_{D_{(s)}}^{\tau/\mu} &= \frac{\Gamma(D_{(s)}^{+} \rightarrow \tau^{+}\upsilon)}{\Gamma(D_{(s)}^{+} \rightarrow \mu^{+}\upsilon)} = \frac{m_{\tau}^{2} \left(1 - m_{\tau}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}}{m_{\mu}^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}} \\ R_{D_{(s)}}^{\tau/\mu} &= \frac{\Gamma(D_{(s)}^{+} \rightarrow \tau^{+}\upsilon)}{\Gamma(D_{(s)}^{+} \rightarrow \mu^{+}\upsilon)} = \frac{m_{\tau}^{2} \left(1 - m_{\tau}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}}{m_{\mu}^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}} \\ R_{D_{(s)}}^{\tau/\mu} &= \frac{\Gamma(D_{(s)}^{+} \rightarrow \tau^{+}\upsilon)}{\Gamma(D_{(s)}^{+} \rightarrow \mu^{+}\upsilon)} = \frac{m_{\tau}^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}}{m_{\mu}^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}} \\ R_{D_{(s)}}^{\tau/\mu} &= \frac{\Gamma(D_{(s)}^{+} \rightarrow \tau^{+}\upsilon)}{\Gamma(D_{(s)}^{+} \rightarrow \mu^{+}\upsilon)} = \frac{m_{\tau}^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}}{m_{\mu}^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}} \\ R_{D_{(s)}}^{\tau/\mu} &= \frac{\Gamma(D_{(s)}^{+} \rightarrow \mu^{+}\upsilon)}{\Gamma(D_{(s)}^{+} \rightarrow \mu^{+}\upsilon)} = \frac{m_{\tau}^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}}{m_{\mu}^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}} \\ R_{D_{(s)}}^{\tau/\mu} &= \frac{\Gamma(D_{(s)}^{+} \rightarrow \mu^{+}\upsilon)}{\Gamma(D_{(s)}^{+} \rightarrow \mu^{+}\upsilon)} = \frac{\pi^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}}{m_{\mu}^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}} \\ R_{D_{(s)}}^{\tau/\mu} &= \frac{\Gamma(D_{(s)}^{+} \rightarrow \mu^{+}\upsilon)}{\Gamma(D_{(s)}^{+} \rightarrow \mu^{+}\upsilon)} = \frac{\pi^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}}{m_{\mu}^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}} \\ R_{D_{(s)}}^{\tau/\mu} &= \frac{\Gamma(D_{(s)}^{+} \rightarrow \mu^{+}\upsilon)}{\Gamma(D_{(s)}^{+} \rightarrow \mu^{+}\upsilon)} = \frac{\pi^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}}{m_{\mu}^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}} \\ R_{D_{(s)}}^{\tau/\mu} &= \frac{\pi^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}}{\Gamma(D_{(s)}^{+} \rightarrow \mu^{+}\upsilon)} \\ R_{D_{(s)}}^{\tau/\mu} &= \frac{\pi^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}}{\Gamma(D_{(s)}^{+} \rightarrow \mu^{+}\upsilon)} \\ R_{D_{(s)}}^{\tau/\mu} &= \frac{\pi^{2} \left(1 - m_{\mu}^{2} / m_{D_{(s)}^{+}}^{2}\right)^{2}}{\Gamma(D_{(s)}^{+} \rightarrow \mu^{+}\upsilon)} \\ R_{D_{(s)}}^{\tau/\mu} &= \frac{\pi^{2} \left$$

 $BF(D^+ \rightarrow e^+ \nu) < 9.2 \times 10^{-9}$

 $BF(D_s^+ \rightarrow e^+ \nu) < 1.3 \times 10^{-7}$

 $R_{\rm D}^{\tau\mu} = 2.65$

 $R_{D_{\pi}}^{\tau\mu} = 9.76$

Charged Boson can contribute

LEO results:

 $F(D^+ \to \mu^+ \upsilon) = (3.93 \pm 0.35 \pm 0.10) \times 10^{-4}$ $BF(D^+ \rightarrow e^+ \upsilon) < 8.8 \times 10^{-6}$ $BF(D^+ \rightarrow \tau^+ \upsilon) < 2.1 \times 10^{-3}$ $BF(D_s^+ \to \mu^+ \upsilon) = (6.57 \pm 0.90 \pm 0.34) \times 10^{-3}$ $BF(D_{\rm s}^+ \to \tau^+ \upsilon) = (6.29 \pm 0.78 \pm 0.52) \times 10^{-2}$ $R_{D_c}^{\mu,\tau} = 11.74 \pm 1.7 \pm 0.2$ $BF(D_s^+ \rightarrow e^+ \upsilon) < 1.2 \times 10^{-4}$ Belle: $BF(D_s^+ \to \mu^+ \nu) = (6.44 \pm 0.76 \pm 0.57) \times 10^{-3}$

Charm: The Future

- Lattice QCD
 - Already have high precision D and D_s decay constants (error lower than experiment).
- BES-III D→lυ
 - Goal 12x (4x) Cleo-c D (D_s) dataset
 - Factor 2-3 improvement in statistical error
 - Statistical error should then equal current Cleo-c systematic error.
- BES-III D→h l⁺l^{-'} (e.g. D→K⁻ μ^+e^-)
 - UL on LFV decays improve by 100-1000 over CLEO/FOCUS/D0 etc... with 20 fb⁻¹
- Super B factories $D \rightarrow I_{\upsilon}$
 - Factor 10 improvement in statistical error
 - But needs to work on systematics

B and Y(nS) decays

 $B^{0} \rightarrow |^{+}|^{-}$, $B^{0} \rightarrow |^{+}\tau^{-}$, $B^{+} \rightarrow |^{+}\upsilon$

Standard Model:

$$\mathbf{B}F(B^{+} \to l^{+}\upsilon) = \frac{G_{F}^{2}m_{B}m_{l}^{2}}{8\pi} \left[1 - \frac{m_{l}^{2}}{m_{B}^{2}}\right]\tau_{B}f_{B}^{2}|V_{ub}|^{2}$$

SM Prediction:

 $BF(B^{+} \to e^{+}\upsilon_{e}) \sim (1.2 \pm 0.3) \times 10^{-11}$ $BF(B^{+} \to \mu^{+}\upsilon_{\mu}) \sim (5.2 \pm 1.3) \times 10^{-7}$ $BF(B^{+} \to \tau^{+}\upsilon_{e}) \sim (1.59 \pm 0.40) \times 10^{-4}$

Charged Higgs Effect:

$$BF = BF_{SM} \times r_H, \quad r_H = \left(1 - \frac{m_B^2}{m_H^2} \tan^2 \beta\right)^2$$

Channel BF (UL 90%)

$$B^{0} \rightarrow \mu^{+}\mu^{-} < 5.2 \times 10^{-8}$$

 $B^{0} \rightarrow e^{+}e^{-} < 11.3 \times 10^{-8}$
 $B^{0} \rightarrow e^{\pm}\mu^{\mp} < 9.2 \times 10^{-8}$
 $B^{+} \rightarrow e^{+}\nu < 1.9 \times 10^{-6}$
 $B^{+} \rightarrow \mu^{+}\nu < 1.0 \times 10^{-6}$
 $B^{0} \rightarrow e^{+}\tau^{-} < 2.8 \times 10^{-5}$
 $B^{0} \rightarrow \mu^{+}\tau^{-} < 2.2 \times 10^{-5}$

 $\bullet Error$ on BF prediction from V $_{ub}$ (~10%) and f $_{B}$ (~10%)

 $\bullet B^{\scriptscriptstyle +} {\rightarrow} \mu^{\scriptscriptstyle +} \upsilon$ experimental Upper Limit approaching SM prediction

•
$$B^+ \rightarrow \mu^+ \upsilon$$
 with $B^+ \rightarrow \tau^+ \upsilon$ leads to LU test
13th July 2009 Fergus Wilson

B⁻→**T**⁻υ

•Need to reduce error

•HFAG Average BF($B \rightarrow \tau \upsilon$) = (1.73±0.35) x 10⁻⁴

•BF on edge of current experimental reach

 $\delta(B \to \tau v) < 10\%, 20\%, 30\%$ 1000 1000 1σ 900 95% exclusion region 800 assuming 2σ 800 Constraints $B \rightarrow \tau v = (1.59 \pm 0.4) \times 10^{-4}$ H[±] Mass (GeV/c²) 00 00 00 M_{sleptons} combined with g-2 700 600 500 200 400 Tevatron Run I LEP 300 25 20 60 80 35 40 5 10 15 20 30 100 $\Delta a_{\mu} \times 10^{10}$ tan β

13th July 2009

Fergus Wilson, RAL. LFV and LU

Lepton Universality and LFV in Y(nS) decays

• $BF(Y(ns) \rightarrow l+l-)$ should be independent of flavour I.

$$e^+e^- \to \gamma^* \to \Upsilon^* \to \tau \mu$$

- Y(nS) and τ LFV decays are related:
- Sensitive to a low mass CPodd Higgs, A⁰.

LFV B Factory UL on

$$\frac{B(\Upsilon \to \mu \tau)}{B(\Upsilon \to \tau \tau)} \propto \left(\frac{\alpha_N}{\alpha}\right)^2 \left(\frac{M_{\Upsilon}}{\Lambda}\right)^4$$

Mode $R(\tau\tau / \mu\mu)$ $\Upsilon(1S) = 1.02 \pm 0.02 \pm 0.05$ $\Upsilon(2S) = 1.04 \pm 0.04 \pm 0.05$ • LU Cleo results for $R(TT/\mu\mu)$: $\Upsilon(3S) = 1.07 \pm 0.08 \pm 0.05$ Mode $B(\tau\mu)/B(\mu\mu)$ $\Upsilon(1S) < 0.023\%$ $\Upsilon(2S) < 0.17\% \} \Rightarrow \Lambda > 1.5 \text{ TeV}$ $\Upsilon(3S) < 0.13\%$

R(τμ/μμ):

$B \rightarrow D T \upsilon$

- Also sensitive to charged Higgs
- Different theory systematics (no V_{ub} and f_B but does have B→D form factors).
- q² and τ polarisation also affected by different BSM.
- Universality between $b \rightarrow cH$, $b \rightarrow uH$, $b \rightarrow tH$ (LHC).

$$BF(B^{+} \to D^{0}\tau^{+}\upsilon_{\tau}) = (1.51^{+0.41+0.24}_{-0.39-0.19} \pm 0.15)\%$$

$$BF(B^{0} \to D^{-}\tau^{+}\upsilon_{\tau}) = (1.01^{+0.46+0.13}_{-0.41-0.11} \pm 0.10)\%$$

$$BF(B^{+} \to D^{*0}\tau^{+}\upsilon_{\tau}) = (3.04^{+0.69+0.40}_{-0.66-0.47} \pm 0.22)\%$$

$$BF(B^{0} \to D^{*-}\tau^{+}\upsilon_{\tau}) = (2.56^{+0.75+0.31}_{-0.66-0.22} \pm 0.10)\%$$

b

 $m_{\rm h}$ tan β

H+/W+

С

 $m_{\tau} \tan \beta$

 $V_{ au}$

• Deviation from SM: 0.5 σ (B⁰) and 1.6 σ (B⁺)

B decays: The Future

- Need improvement on V_{ub} and f_B.
- LHCb
 - BF(B_s→ $e^+\mu^-$) < 6.5×10⁻⁸ in 2 fb⁻¹; <0.4×10⁻⁸ in 100 fb⁻¹
 - □ BF(B→TX) < 10⁻⁸ in 10 fb⁻¹
- B factories are a natural place to do this
 - □ BF(B→τυ) ±2%
 - □ BF(B→TX) < 10⁻⁸⁻⁹
 - □ BF(B \rightarrow µv) 5σ discovery with 5 fb⁻¹
 - BF($D_s \rightarrow \tau \upsilon$) ±1.5% (charm factory better for $D \rightarrow I \upsilon$).
 - □ BF(B→Dτυ) ±2.5%

Lattice QCD : possible 5 - year plan

- Lattice QCD (Form Factors, V_{CKM}, masses) is an important input to some LFV measurements.
- Alternatively, assuming LF conservation, improved experimental precision will drive LQCD.

Process	$K \rightarrow \pi l \nu$	$\frac{K \to l\nu}{\pi \to l\nu}$	$D, D_s \rightarrow l\nu$	$B, B_s \rightarrow l\nu$
Lattice Parameter	$f_{+}(0)$	$f_{\scriptscriptstyle K}$ / $f_{\scriptscriptstyle \pi}$	$f_{D_{(s)}}$	$f_{B_{(s)}}$
Current Lattice Error	0.5%	0.6%	2%	6%
Current Exptl. Error	0.2%	0.2%	4%	30%
Future Lattice Error	0.2%	0.3%	0.5%	2%

Concluding Remarks

- There is no one "LFV experiment".
- Highly interconnected set of measurements.
- Many measurements are still statistics dominated but will become theory-dominated with next generation experiments.
- Many SUSY models are already being challenged by LFV and LU measurements.
- We can expect many measurement errors to improve as *luminosity*¹.
- Flavour is essential to the understanding of the Higgs (SM and BSM) and SUSY.
- It is important to measure LFV in tau and muon decays as different models predict different relative levels of tau and muon LFV.

Concluding Remarks

- g-2 is still a benchmark measurement. Hadronic uncertainties can be understood from tau, charm, beauty and hadron experiments.
- BSM models can be confirmed/excluded by measuring a set of golden-mode flavour decays.
- The UK has built up a huge expertise in flavour physics over the last decade (both experimental and theoretical).
- Flavour has a successful track record on flavour (on-time, on-budget).
- A large fraction (30%?) of our community is interested in flavour physics.
- Flavour is essential for the breadth of the field in the UK.
- Without flavour physics, LHC discoveries will not be complete.