Rare Decays

I'll make a (biased) picture of the status in 2014

- Assumptions
- Rare B decays
- Rare K decays
- Rare D decays

...and will draw some conclusions on prospects

Thanks to Adrian Bevan, Ulrik Egede, Cristina Lazzeroni, Franz Muheim, Steve Playfer, Chris Parkes, Jonas Rademacker, Maria Smizanska, ...

13/07/09 — PPAP community review

Patrick Koppenburg Imperial College London

Rare Decays— 13/07/09 — PPAP community review – p. 1/33

Imperial CollegeLondonP. Koppenburg

Indirect searches

- Sensitive to New Physics effects
 - When was the Z discovered?
 - \circ 1973 from $N\nu \rightarrow N\nu$?
 - 1983 at SpS?
 - c quark postulated by GIM, third family by KM
- Estimate masses
 - t quark from $B\overline{B}$ mixing
- Get phases of couplings
 - Half of new parameters
 - Needed for a full understanding
- Look in lepton and **flavour** sectors
 - CP asymmetry in the Universe

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 2/33

Questions

 $b \rightarrow s\gamma$: Is a more precise measurement of the $b \rightarrow s\gamma$ branching fraction possible?

Polarisation: What are the most promising ways to measure the photon polarisation in $b \rightarrow s\gamma$? How much data is needed for precise tests of the SM? Will the measurements be theory limited by 2014?

 $B_s \rightarrow \mu \mu$: will the precision to unambiguously confirm or exclude SM be achieved by 2014? What will be the limiting factors? (topologically similar backgrounds, normalisation channels, knowledge of B_s production fraction at high energies, etc.). Which experiment(s) are best placed to overcome these? What can we learn from $B \rightarrow \tau \nu$? What is the potential for $B_d \rightarrow \mu \mu$ and the $B_d \rightarrow \mu \mu / B_s \rightarrow \mu \mu$ ratio?

Imperial College

Questions

- $b \rightarrow \ell \ell s$: What physics is accessible at different luminosities? (eg. How much data is needed for full angular analysis? How does the physics reach improve with the more complete analysis?). At what stage will theoretical uncertainties become limitations, and how much data is needed to do inclusive analyses to further reduce the error?
- $b \rightarrow d$: How much additional data is needed to constrain new physics effects in $b \rightarrow d\gamma$ and $b \rightarrow \ell \ell d$ decays, compared to $b \rightarrow s$ equivalents? What more is learnt about new physics from these?
- **Rare** *K*: What precision should be aimed for in $K^+ \rightarrow \pi^+ \nu \nu$ and $K_L^0 \rightarrow \pi^0 \nu \nu$ measurements? What will these measurements tell us about new physics?

Rare D: Is there anything to learn from up-type quarks?

Imperial College

Assumptions for \boldsymbol{B} physics in 2014

B factories:

BaBar is terminated. They are finalising their analyses.

Belle is approved until 1ab⁻¹. They will now (mainly?) run at $\Upsilon(5S)$.

Belle II collaboration is being set up. Seems unlikely (to me) they will

have data in 2014...

- They must start in FY2013
- See 3rd Belle II
 Open Meeting

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 5/33

Assumptions for *B* physics in 2014

B factories:

BaBar is terminated. They are finalising their analyses.

Belle is approved until 1ab⁻¹. They will now (mainly?) run at $\Upsilon(5S)$.

Belle II collaboration is being set up. Seems unlikely (to me) they will have data in 2014...

Hadron colliders:

CDF & D0 will take data until LHC makes them redundant Atlas & CMS have a B programme but can't compete with ... **LHCb** will be the key player between 2010–14

		\sqrt{s}	LHCb	Atlas & CMS	
	Oct–Jul (?)	\sim 8 TeV	200 pb $^{-1}$	300 pb^{-1}	
	2011 (?)	14 TeV	1 fb $^{-1}$	A few ${\rm fb}^{-1}$	
	2012+	14 TeV	\geq 2 fb $^{-1}$ / year	10 fb $^{-1}$ / year	
Imp	Total to 2014	14 TeV	10 fb $^{-1}$	30 fb $^{-1}$	
Lor	ndon P. Koppenburg	Ra	re Decays— 13/07/0	9 — PPAP commun	ity review – p. 5/33

Assumptions for B physics in 2014

Radiative Decays

- $b \rightarrow s \gamma$: Is a more precise measurement of the $b \rightarrow s \gamma$ branching fraction possible?
- **Polarisation:** What are the most promising ways to measure the photon polarisation in $b \rightarrow s\gamma$? How much data is needed for precise tests of the SM? Will the measurements be theory limited by 2014?

Imperial CollegeLondonP. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 6/33

$b \rightarrow s \gamma$ branching fraction

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 7/33

$b ightarrow s \gamma$ branching fraction

- Amplitude $\propto V_{ts}|C_7|$
- First penguin ever observed
- Experiment (WA): $\mathcal{B} = (3.56 \pm 0.25) \cdot 10^{-4}$
- SM: $\mathcal{B}=(3.15\pm0.23)\cdot10$ ($E_{\gamma}>1.6~{\rm GeV}$) [Misiak et al., h
- Sets a very strong constr Physics

Imperial College

London P. Koppenburg

- Inclusive BF will be improved, down to ($E_{\gamma} > 1.6 \text{ GeV}$)
 - After that, needs recoil
- Theory will improve as well
 - But probably not enough to change the picture
- Except if there's indication of new physics ...
- → Very interesting channel, but not my first bet for 2014+

[Ellis et. al, hep-ph/0709.0098]

1000

$b \rightarrow s \gamma$ photon polarisation

The photon polarisation is not well measured.

• Naively
$$r = \frac{C'_{7\gamma}}{C_{7\gamma}} \stackrel{\text{SM}}{\simeq} \frac{m_s}{m_b}$$

- Gluons contribute $0.5 \pm 1.0\%$ [Ball & Zwicky PLB642:478,2006]
- Right-handed operators could contribute

- ✓ Mixing-induced CP violation in B_s → $\phi\gamma$ [Atwood et al., PRL79:185, 1997]
- Λ_b baryons
 [Hiller & Kagan, PRD65:074038, 2002]

•
$$B \rightarrow \gamma K^{**}(K\pi\pi)$$

[Gronau & Pirjol, PRD66 054008, 2002] [Gronau et al., PRL88:051802, 2002]

- ✓ Virtual photons ($b \rightarrow \ell \ell s$) [Melikhov et al., PLB442:381-389,1998]
 - Converted photons
 [Grossman et al., JHEP06:29,2000]

Imperial College

$$B_s o \phi \gamma$$

In SM mainly
$$B_s \rightarrow \phi \gamma_{\mathsf{R}}$$
 and $B_s \rightarrow \phi \gamma_{\mathsf{L}}$. Mixing only if wrong polarisation.
 $\mathcal{A}^{\mathsf{mix}}$ tiny $\mathcal{A}^{\mathsf{dir}} = 0$ in MFV $\mathcal{A}^{\Delta\Gamma} \simeq \sin(2r)$
 $\mathcal{A}_s(t) = \frac{\Gamma_{\overline{B}_s \rightarrow \phi \gamma} - \Gamma_{B_s \rightarrow \phi \gamma}}{\Gamma_{\overline{B}_s \rightarrow \phi \gamma} + \Gamma_{B_s \rightarrow \phi \gamma}} = \frac{\mathcal{A}^{\mathsf{dir}} \cos \Delta m_s t + \mathcal{A}^{\mathsf{mix}} \sin \Delta m_s t}{\cosh \frac{1}{2} \Delta \Gamma t - \mathcal{A}^{\Delta \Gamma} \sinh \frac{1}{2} \Delta \Gamma t}$

LHCb combines a tagged and an untagged approach (measures all A):

- 5% error on $\mathcal{A}^{\mathsf{mix}}$ (10 fb $^{-1}$)
- 9% error on $\mathcal{A}^{\Delta\Gamma}$ (10 fb $^{-1}$)

→ Assuming small r, LHCb can get a 5% error with 10 fb^{-1}

[LHCb-2007-147]

Rare Decays— 13/07/09 — PPAP community review – p. 9/33

Future prospects on polarisation

• Theory error is out of reach!

Imperial College

P. Koppenburg

London

- Belle can improve on $B \to K^0_S \pi^0 \gamma$ and $B \to K^0_S \rho \gamma$
 - But they have errors of 20–30% with >500fb $^{-1}$.
- LHCb should reach 5% error on the photon polarisation with 10 fb $^{-1}$
 - 5% from $B_s
 ightarrow \phi \gamma$ ([LHCb-2007-147])
 - A similar error from $B \rightarrow eeK^*$ at low q^2 ([LHCb 2009-008])
 - $\Lambda_b
 ightarrow \Lambda\gamma$ should get $\sim 10\%$ ([LHCb 2006-013])
- Could be improved with larger statistics beyond 2014
 - I hope that in 2014 we'll have hints of right-handed currents already!

Operators

Operator

Effective Hamiltonian ${\cal H}$

$$A(M \to F) = \langle F | \mathcal{H}_{\text{eff}} | M \rangle$$

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu)$$

- Operators \mathcal{O}_i : Long-distance effects
- Wilson coefficients C_i : Short-distance effects (masses above μ are integrated out)

New physics can show up in new operators or modified Wilson coefficients

Operators

Semileptonic Penguins

 $b \rightarrow \ell \ell s$: What physics is accessible at different luminosities? (eg. How much data is needed for full angular analysis? How does the physics reach improve with the more complete analysis?). At what stage will the oretical uncertainties become limitations, and how much data is needed to do inclusive analyses to further reduce the error?

Imperial CollegeLondonP. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 12/33

Semileptonic Penguins

• $B \rightarrow \mu \mu K^*$ very rare in the SM $\mathcal{B}(B \rightarrow \ell \ell K^*) = (1.2 \pm 1.0) \cdot 10^{-6}$ $\mathcal{B}(B \rightarrow \ell \ell K) = (0.5 \pm 0.1) \cdot 10^{-6}$

- Sensitive to
 - Supersymmetry,
 - Graviton exchanges,
 - Extra dimensions
- → Ideal place to look for new physics

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 13/33

$b ightarrow \ell\ell s$ observables

Inclusive decay well described theoretically

- Shape of dilepton mass distribution sensitive to NP
- SM branching ratio $(1.36\pm0.08)\cdot10^{-6} \text{ (NNLL) for} \\ s=q^2/m_b^2<0.25$
- X Inclusive decays difficult to access experimentally
- X Exclusive decays affected by hadronic uncertainties
- Use ratios where hadronic uncertainties cancel out

[[]Goto et al., PRD55 (1997) 4273]

Imperial College

Angular Distributions

There's more information in the full θ_ℓ , θ_K and ϕ distributions

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\theta_l} = \Gamma'\left(\frac{3}{4}F_L\sin^2\theta_l + A_{\mathsf{FB}}\cos\theta_l + \frac{3}{8}(1-F_L)(1+\cos^2\theta_l)\right) + \frac{4}{9} + \frac{3}{8}(1-F_L)(1+\cos^2\theta_l)\right)$$

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\phi} = \frac{\Gamma'}{2\pi}\left(\frac{1}{2}(1-F_L)A_T^{(2)}\cos 2\phi + A_{\mathsf{Im}}\sin 2\phi + 1\right)$$

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\theta_K} = \frac{3\Gamma'}{4}\sin\theta_K\left(2F_L\cos^2\theta_K + (1-F_L)\sin^2\theta_K\right)$$

$$\xrightarrow{\mathsf{P} \text{ Many observables}}$$

$$\mathsf{Imperial College} \qquad \mathsf{Except representation of the sector of the sec$$

Angular Distributions

There's more information in the full θ_ℓ , θ_K and ϕ distributions

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\theta_l} = \Gamma' \left(\frac{3}{4} F_L \sin^2 \theta_l + A_{\mathsf{FB}} \cos \theta_l \right)^{1/2} + \frac{3}{8} (1 - F_L) (1 + \cos^2 \theta_l) + \frac{3}{8} (1 - F_L) (1 + \cos^2 \theta_l) + \frac{3}{8} (1 - F_L) A_T^{(2)} \cos 2\phi \right)^{-0.5} + \frac{3}{8} (1 - F_L) A_T^{(2)} \cos 2\phi \right)^{-0.5} + \frac{3}{8} + \frac{3}{4} (1 - F_L) A_T^{(2)} \cos 2\phi \right)^{-0.5} + \frac{3}{8} + \frac{3}{8} (1 - F_L) A_T^{(2)} \cos 2\phi \right)^{-0.5} + \frac{3}{8} +$$

Angular Distributions

There's more information in the full θ_{ℓ} , θ_{K} and ϕ distributions

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\theta_l} = \Gamma'\left(\frac{3}{4}F_L\sin^2\theta_l + A_{\mathsf{FB}}\cos\theta_l + \frac{3}{8}(1-F_L)(1+\cos^2\theta_l)\right) + \frac{3}{8}(1-F_L)(1+\cos^2\theta_l)\right)$$

$$A_{\mathsf{FB}} = \frac{\left(\int_{0}^{1}-\int_{-1}^{0}\right)\mathrm{d}\cos\theta_l\frac{\mathrm{d}^2\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_l}}{\int_{-1}^{1}\mathrm{d}\cos\theta_l\frac{\mathrm{d}^2\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_l}}$$

$$\Rightarrow \mathsf{Zero point measures ratio of Wilson coeffs C_9/C_7.$$

$$\Rightarrow \mathsf{Forward-backward asymmetry } A_{\mathsf{FB}}$$

$$\mathsf{Imperial College}$$

$$\mathsf{Imperial College}$$

$$\mathsf{Rate Decays-13/07/09-\mathsf{PPAP community review - p. 15/33}$$

Messages from the B factories

Belle: 160+250 $B \rightarrow \ell \ell K^{(*)}$ events in $657 \cdot 10^6 \ B\overline{B}$ [J.T. Wei et al., arXiv:0904.0770v1] __0.5 $B \rightarrow \ell \ell K^{(*)}$ **Babar:** 50+60 events in $384 \cdot 10^6 \ B\overline{B}$ 0 [Aubert et al., PRD 79:031102,2009] 1 [Aubert et al., PRL 102:091803,2009] ___0.5⊧ ≮ F_L : Too little statistics 0 FB asymmetry: Not conclusive yet... ₹

BELLE

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 16/33

Messages from the B factories BELLE **Belle:** 160+250 $B \rightarrow \ell \ell K^{(*)}$ BABAR, FPCP 08' events in $657 \cdot 10^6 \ B\overline{B}$ ح 1.5 [J.T. Wei et al., arXiv:0904.0770v1] __0.5 $B \rightarrow \ell \ell K^{(*)}$ 0.5 **Babar:** 50+60 O events in $384 \cdot 10^6 \ B\overline{B}$ 0 -0.5 -1 [Aubert et al., PRD 79:031102,2009] 1 -1.5[Aubert et al., PRL 102:091803,2009] ___0.5⊧ ≮ 10 12.5 15 17.5 20 22.5 25 5 7.5 25 $q^2(GeV^2/c^2)$ F_L : Too little statistics 0 FB asymmetry: Not conclusive yet... ∢_ **Isospin:** Belle and Babar both 0 unexpected isospin see asymmetries 2 10 12 14 16 6 8 18 20 0 4 $q^2(GeV^2/c^2)$ Need much more statistics

Rare Decays— 13/07/09 — PPAP community review – p. 16/33

London P. Koppenburg

Imperial College

$B_d \rightarrow \mu \mu K^*$ yields with 2 fb⁻¹ $\frac{LHCD}{HCO}$

Expected signal and background yields in 2 fb^{-1} of data (Assuming the SM BR of $12 \cdot 10^{-7}$):

Sample	Yield
$B_d ightarrow \mu \mu K^*$	7200 ± 2100
$b ightarrow \mu \mu s$	2000 ± 100
2($b ightarrow \mu$)	1050 ± 250
$b ightarrow \mu c$ (μq)	600 ± 200
Background	3700 ± 300
B/S	0.5 ± 0.2

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 17/33

$B_d \rightarrow \mu \mu K^*$ yields with 2 fb⁻¹ LHCD

Expected signal and background yields in 2 fb⁻¹ of data (Assuming the SM BR of $12 \cdot 10^{-7}$):

More asymmetries

Experimental sensitivity for 10 fb^{-1} for selected asymmetries [Egede, et. al.]

Blue band: experimental sensitivity assuming a Susy model with large gluino mass.

Green band: Standard model expec-Imperial Cation with error London P. Koppenburg Rare Decays

Rare Decays— 13/07/09 — PPAP community review – p. 18/33

$egin{array}{ll} egin{array}{ll} egin{array} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{ar$

- $B \rightarrow \mu \mu K^*$ is the most complete new physics laboratory at LHCb
- Almost any contribution affecting the Wilson coefficients C_7 to C_{10} can be seen

- Including phases due to a 4th generation
 - Theory errors on CP asymmetries are tiny
- With 10 fb^{-1} LHCb will do a full angular analysis
 - The precision will be close to the *present* theoretical error
 - → Theoretical and experimental errors will $\mathcal{O}(10\%)$
- In 2014 errors in some angular asymmetries will be comparable to theory, others will need more data
- \rightarrow Exclusive $b \rightarrow \ell \ell s$ modes will profit from more data

Imperial College

Beyond $B o \ell \ell K^{(*)}$

- How will theory evolve? Which NP model will be relevant?
 - None of the used predictions include lattice QCD
 - \rightarrow Lattice could be very useful at high q^2 (where SCET doesn't work)
 - \rightarrow Large interference with $c\overline{c}$, potentially interesting effects
- Fully inclusive analyses are very difficult
 - $b \rightarrow \ell \ell s$ + recoil would need huge $\int \mathcal{L}$ to match LHCb $B \rightarrow \mu \mu K^*$ statistics
- I do not believe that semi-inclusive analyses (sum of exclusive modes) significantly reduce the errors

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 20/33

$|B ightarrow u \overline{ u} K^{(*)}|$

- $b \rightarrow \nu \overline{\nu} s$ decays are interesting probes of New Physics
 - Theoretically clean :
 - No photon penguin (C_7)
 - \circ No $c\bar{c}$ interference
 - → Only short distance
 - Coupling to 3rd generation via ν_{τ}
- Experimentally challenging
 - Only exclusive modes accessible : $B \to \nu \overline{\nu} K$ and $B \to \nu \overline{\nu} K^*$
 - Requires B factory with recoil tag
 - → Huge statistics required
- SM $\mathcal{B}(B \rightarrow \nu \overline{\nu} K) = 4 \cdot 10^{-6}$
- Best limit : $< 14 \cdot 10^{-6}$ (Belle 500 fb⁻¹)

→ A BF measurement is within reach of a high-lumi factory

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 21/33

$|B_s ightarrow \mu \mu|$

 $B_s \rightarrow \mu\mu$: will the precision to unambiguously confirm or exclude SM be achieved by 2014? What will be the limiting factors? (topologically similar backgrounds, normalisation channels, knowledge of B_s production fraction at high energies, etc.). Which experiment(s) are best placed to overcome these? What can we learn from $B \rightarrow \tau\nu$? What is the potential for $B_d \rightarrow \mu\mu$ and the $B_d \rightarrow \mu\mu/B_s \rightarrow \mu\mu$ ratio?

$B_s ightarrow \mu \mu$ at LHC

- Very rare but SM BF well predicted $\mathcal{B} = (3.5 \pm 0.3) \cdot 10^{-9}$
- Sensitive to (pseudo)scalar operators
 - MSSM: $\mathcal{B} \propto rac{ an^6 eta}{M^4}$
- Present limit from CDF $\mathcal{B} < 5.8 \cdot 10^{-8}$ (95% CL)
- With SM BF:
 - → 3σ evidence with 2 fb⁻¹
 - → 5σ observation with 6 fb⁻¹
- But what if BF is *lower*?
 - Not clear how much data is needed to exclude the SM from below

Imperial College

$B_s ightarrow \mu \mu$ at LHC

• LHCb:

- Mass resolution good enough to tell $B_s \to \mu\mu$ from $B_d \to \pi\pi \to \mu\mu$
- Efficiencies determined from B_d $\rightarrow \pi \pi$ (geometry) and $B \rightarrow$ $J/\psi K$ (trigger)
- Atlas & CMS also competitive
- Main uncertainty will be normalisation
 - No absolute cross sections at LHC
 - Can only normalise to well-measured B_s decay
 - Presently $\mathcal{B}(B_s \rightarrow D_s \pi)$ is $(3.3 \pm 0.5) \cdot 10^{-3}$ (15%)
 - Belle's running at $\Upsilon(5S)$ will help

Imperial College

London P. Koppenburg

SM

Luminosity (

10

5ơ sensitivity 3ơ sensitivity BG only, 90%CL

30

20

Integrated Luminosity, fb⁻¹

 $BR(x10^{-9})$

3R(B_s→μμ)x10⁻⁹)

10

1

$B_s ightarrow \mu \mu$ at LHC

• LHCb:

- Mass resolution good entell $B_s \rightarrow \mu \mu$ from B_d
- Efficiencies determine $\rightarrow \pi \pi$ (geometry) and $J/\psi K$ (trigger)
- Atlas & CMS also competi
- Main uncertainty will be no
 - No absolute cross sec
 - Can only normalise to well-measured B_s dec
 - Presently $\mathcal{B}(B_s \rightarrow D_s \pi)$ $(3.3 \pm 0.5) \cdot 10^{-3}$ (15)
 - Belle's running at $\Upsilon(5S)$

Imperial College

London P. Koppenburg

• $B_d \rightarrow \mu\mu$ suppressed by $|V_{td}|/|V_{ts}|$: $\mathcal{B} = (1.0 \pm 0.1) \cdot 10^{-10}$

- This could not hold for *R*-parity violating models
 - ➔ Test of MFV
- 5σ observation out of reach by 2014 if SM holds
- → If $B_s \rightarrow \mu \mu$ is *not* compatible with the SM value, there will be a very strong interest in $B_d \rightarrow \mu \mu$.

B o au u

- Sensitive to $\tan^2\beta/m_{H^+}^2$
- The present average $(1.4 \pm 0.4) \cdot 10^{-4}$ is higher than expected
 - Use about half of (expected) full statistics (Belle & BaBar)
 - → Minor improvements expected from present experiments
- LHCb won't do it

P. Koppenburg

Imperial College

London

• Might still be hot (even hotter) in 2014

Rare Decays— 13/07/09 — PPAP community review – p. 24/33

b ightarrow d

- $b \rightarrow d$: How much additional data is needed to constrain new physics effects in $b \rightarrow d\gamma$ and $b \rightarrow \ell \ell d$ decays, compared to $b \rightarrow s$ equivalents? What more is learnt about new physics from these?
 - $b \rightarrow d$ transitions tell us if New Physics has the same flavour structure as the SM
 - SM expects

$$\frac{\mathcal{B}(b \to d\gamma)}{\mathcal{B}(b \to s\gamma)} = \frac{|V_{td}|^2}{|V_{ts}|^2} \simeq 0.04$$

 It becomes very hot when there are signs of NP elsewhere

London P. Koppenburg

Imperial College

Inclusive $b \rightarrow d$

- $b \rightarrow s\gamma$ spectrum is actually $b \rightarrow s\gamma + b$ $\rightarrow d\gamma$
- BF is then corrected for assumed $b \rightarrow$ $d\gamma$ contribution
 - → we know nothing inclusively
 - and we won't do it fully inclusively
 - But
- $b \rightarrow \ell \ell d$ is no better
- I am not fond of semi-inclusive techniques
- $A_{\rm CP}(b \rightarrow d\gamma + b \rightarrow s\gamma)$ is a good null-test of the SM.
 - Need to flavour-tag the other B, or recoil.
 - \rightarrow Needs large statistics at a B factory

Imperial College

P. Koppenburg London

Exclusive b ightarrow d

- LHCb will improve on $b \rightarrow d\gamma$ compared to the B factories
- And observe $b \rightarrow \ell \ell d$ decays
- But it will take time
- Statistical errors will be large

- I don't expect large improvements in $b \to d\gamma$ and $b \to \ell \ell d$ by 2014
 - Some first observations, with large errors
 - Some direct CP, with large errors
- ➔ Higher statistics would help a lot

Expected yields at LHCb (my guesses):

$10~{\rm fb}^{-1}$	Yield	B/S
$B_d \rightarrow K^* \gamma$	350k	0.6
$B_s \rightarrow \phi \gamma$	50k	< 0.5
$B_d \rightarrow \rho \gamma$		
$B_d {\rightarrow} \omega \gamma$	200	
$B_s \to \overline{K}^* \gamma$	Can	i't do
$\frac{B_s \rightarrow \overline{K}^* \gamma}{B \rightarrow \mu \mu K^*}$	Can 35k	n't do 0.5
$ \begin{array}{c} B_s \to \overline{K}^* \gamma \\ \overline{B \to \mu \mu K^*} \\ \overline{B \to \mu \mu \rho} \end{array} $	Can 35k 100	o't do 0.5
$ \begin{array}{c} B_s \rightarrow \overline{K}^* \gamma \\ \hline B \rightarrow \mu \mu K^* \\ B \rightarrow \mu \mu \rho \\ B \rightarrow \mu \mu \pi \end{array} $	Can 35k 100 100	o't do

Empty field : don't know

London P. Koppenburg

Imperia

Kaons

Rare K: What precision should be aimed for in $K^+ \rightarrow \pi^+ \nu \nu$ and $K^0_L \rightarrow \pi^0 \nu \nu$ measurements? What will these measurements tell us about new physics?

I assume Gino will have said that:

If Minimal Flavour Violation: $K \to \pi \nu \nu$ strongly correlated with $B \to \mu \mu$

→ Need precise measurement of both to test MFV

Else: No clear correlation. Potentially large effects in rare K decays.

→ Need $K \to \pi \nu \nu$ and $K \to \pi \ell \ell$

$K o \pi u \overline{ u}$

Very sensitive to many NP models:

- MFV, UED, Littlest Higgs, Susy
- Important probe to disentangle models

 $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ is 90% unaffected from long-distance contributions.

- SM $\mathcal{B} = 8 \cdot 10^{-11}$
- 5% irreducible error

 $K^0_L
ightarrow \pi^0
u \overline{
u}$ is 99% unaffected from long-distance contributions.

- SM $\mathcal{B} = 3 \cdot 10^{-11}$
- 2% irreducible error

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 29/33

Kaon prospects

- Experimental error on BF ($K \rightarrow \pi \nu \nu$) will be $\mathcal{O}(10\%)$
 - Similar to present theoretical error
 - Constrains many models
- Still very far from irreducible error

 K⁺ → π⁺νν̄: 5% irreducible error
 O(500) events with S/B ~ 10
 Within experimental reach
 K⁰_L → π⁰νν̄: 2% irreducible error
 O(4000) events with S/B ~ 1.5
 Far beyond anything planned

 Rare K decays are a crucial test of NP

Impact of kaon physics on unitarity triangle in 2014

Still great interest beyond 2014, irrespective of NP discovered by then

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 30/33

Up-type

- Rare D: Is there anything to learn from up-type quarks?
 - B and K FCNC probe down-down transitions
 - \checkmark D accesses up-type quarks
 - $D \to \ell \ell$, $D \to \ell \ell \pi$, $D \to \ell \ell \rho$, $c \to \gamma u \dots$
 - **X** Branching fractions very low ($\mathcal{B}(D \rightarrow \mu \mu) = 10^{-13}$)
 - \checkmark Polluted by long-distance effects ($\phi \rightarrow \mu \mu$, $D \rightarrow \pi \pi$)
 - → Large theoretical errors, but rapid developments
 - Reaching SM sensitivity will be very hard
 - Key players: *B* factories, BES3, LHCb
 - Limits will improve significantly in next years. How this compares with theory is unclear to me.
 - → Rare *D* might signal new physics, but won't tell what it is

Imperial College

Summary

		Improved	Limited	Interesting	
	Mode	by 2014	by theory	In 2014?	Where
-	$B_d \to \mu \mu$	Yes	No	Yes	pp
	$B \to \tau \nu$	Hardly	No	Yes	$\Upsilon(4S)$
	$b ightarrow s \gamma$ polarisation	Yes	No	Yes	Both
	$B \to \ell \ell K^*$	Yes	No	Yes	pp
	$B \to \nu \nu K$	Hardly	Νο	Yes	$\Upsilon(4S)$
	$\operatorname{CP} \left(b ightarrow s \gamma extsf{+} b ightarrow d \gamma ight)$	No	Νο	Yes	$\Upsilon(4S)$
	Exclusive $b \rightarrow d$	Yes	Νο	Yes	Both
	$BF(b o s\gamma)$	Hardly	Yes(?)	Unlikely	$\Upsilon(4S)$
	$B_s \to \mu \mu$	Yes	Yes	No	
	D decays	Yes	Maybe	Unclear	Both
	$K \to \pi \nu \nu$	Yes	No	Yes	Dedic.
perial	College				
ondon	P. Koppenburg	Rare Decays—	13/07/09 — P	PAP community	review – p. 32

 $B_d
ightarrow \mu \mu$ and B
ightarrow au
u: will need data beyond 2014

→ BSM Higgs-couplings

Rare kaons: We are very far from theoretical limits

- → Test of MFV
- $b
 ightarrow d\gamma$: The photon polarisation will not be theory limited
 - → Right-handed currents
- $b
 ightarrow \ell \ell s$: Rich NP laboratory, it would profit from more statistics
 - How much can lattice help?
- $b \rightarrow d$: Still large errors in 2014
 - → Flavour-structure of NP

Rare D: Experimentally and theoretically difficult

Wilson coefficients: In 2014 we will just start doing fits to Wilson coefficients: Need more data to over-constrain

And combine with Atlas/CMS discoveries

Imperial College London P. Koppenburg

Backup Slides

Imperial CollegeLondonP. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 34/33

Future Kaon Experiments

$K^+ ightarrow \pi^+ u \overline{ u}$: NA 62 at CERN

- Data taking 2012–2014
- Expect $\mathcal{O}(100)$ events with $S/B \sim 10$.

 $K^0_L
ightarrow \pi^0
u \overline{
u}$: E14 (KOTO) at J-PARC

- Now upgrading detector. Start in 2011.
- Expect 100 events with $S/B \sim 1.5.$
- → See C. Lazzeroni's talk

Imperial College

$\operatorname{CP} olimits$ -violation in $B o K^* \gamma$

Aim to measure the time-dependent CP asymmetry in $B \to K^*$ ($K^0_S \pi^0 \gamma$)

- 1. Select $B_d \to K^* \gamma$ events with $K^* \to K^0_S \pi^0$ and $K^0_S \to \pi^+ \pi^-$
- 2. Get rid of $B_d \to K^* \pi^0$ background

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 36/33

$\operatorname{CP} olimits$ -violation in $B o K^* \gamma$

$\Lambda_b \rightarrow \Lambda \gamma$ polarisation

$$\begin{aligned} r &= \frac{C'_{7\gamma}}{C_{7\gamma}} \quad \rightarrow \quad \alpha_{\gamma} = \frac{1 - |r|^2}{1 + |r|^2} \\ \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{\gamma}} \quad \propto \quad 1 - \alpha_{\gamma}P_{\Lambda_b}\cos\theta_{\gamma} \\ \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_p} \quad \propto \quad 1 - \alpha_{\gamma}\alpha_{p,\frac{1}{2}}\cos\theta_{\gamma} \\ \alpha_{p,\frac{1}{2}} &= 0.642 \pm 0.013 \end{aligned}$$

- Measure it at 1% with $\Lambda_b \rightarrow J/\psi \Lambda$. [E. Leader] [Hřivnác et al, hep-ph/9405231]
- But: $\Lambda\gamma$ does not form a good vertex
 - Most Λ decay outside of vertex detector

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 37/33

k,π

 $\theta_{\rm x}$

 θ_{p}

Entries / 0.04

4(

20

-0.5

[F. Legger, T. Schietinger, hep-ph/0605245]

Ζ

θ

 Λ^*

Ŋ

θ

fit = $c(1 + \alpha \cos \theta)$

 $\alpha = 1.016 \pm 0.02$

0.5

 $\cos \theta_{\gamma} (\Lambda_{\rm b})$

0

$\Lambda_b \rightarrow \Lambda \gamma$ polarisation

$$\begin{aligned} r &= \frac{C'_{7\gamma}}{C_{7\gamma}} \quad \rightarrow \quad \alpha_{\gamma} = \frac{1 - |r|^2}{1 + |r|^2} \\ \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{\gamma}} \quad \propto \quad 1 - \alpha_{\gamma}P_{\Lambda_b}\cos\theta_{\gamma} \\ \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_p} \quad \propto \quad 1 - \alpha_{\gamma}\alpha_{p,\frac{1}{2}}\cos\theta_{\gamma} = 1 \\ \alpha_{p,\frac{1}{2}} = 0 \end{aligned}$$

- → Use also $\Lambda_b \to \Lambda(1670)\gamma$, $\Lambda(1670) \to Kp$
 - Proton polarisation is flat
 less information
- Spin $\frac{3}{2} \Lambda(1520)$ and $\Lambda(1690)$ can also be used.
 - Need to be disentangled from $\Lambda(1670)$

Entries / 0.04 fit = $c(1 + \alpha \cos \theta)$ $\alpha = 1.016 \pm 0.02$ 4(20 -0.5 0.5 0 $\cos \theta_{\gamma} (\Lambda_{\rm b})$ [F. Legger, T. Schietinger, hep-ph/0605245] Rare Decays— 13/07/09 — PPAP community review – p. 37/33

Imperial College

 $\Lambda_b \rightarrow \Lambda \gamma$ yields

Yields/ $2 {\rm fb}^{-1}$		B/S
$\Lambda_b o \Lambda\gamma$	750	< 42
$\Lambda_b ightarrow \Lambda$ (1520) γ	4200	< 10
$\Lambda_b ightarrow \Lambda$ (1670) γ	2500	< 18
$\Lambda_b ightarrow \Lambda$ (1690) γ	2200	< 18

- Λ* modes have less statistical power because of strong decay
- Combined resolution on r is $\sim 20\%$ after $2~{\rm fb}^{-1}$.
- That's far from SM but already interesting for NP searches.

[LHCb note 2006-012] [LHCb note 2006-013]

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 38/33

 $B_d \rightarrow \omega \gamma$ and $B_d \rightarrow \rho \gamma$

 $B_d \to \omega \gamma$ and $B_d \to \rho \gamma$ are suppressed by $|V_{td}/V_{ts}|^2 \sim 1/23$.

 $b \xrightarrow{V_{tb}} W^{-} \xrightarrow{V_{td}} d$ $t \xrightarrow{t} t$ $b \rightarrow d\gamma \xrightarrow{\gamma} \gamma$

They are selected the same way as $K^*\gamma$

- $B_d \rightarrow \omega \gamma$: Additional π^0 reduces efficiency. Earlier study expects ~ 40 events for 2 fb⁻¹.
- $B_d \rightarrow \rho \gamma$: More work on photon ID and suppression of merged π^0 is required to get the sensitivity to $B_d \rightarrow \rho \gamma$. We are optimistic.
 - $|V_{td}/V_{ts}|$ from $\mathcal{B}(B_d \rightarrow (\rho, \omega)\gamma)/\mathcal{B}(B_d \rightarrow K^*\gamma)$ is likely to be theory-dominated soon.
 - It's difficult to make statements about CP asymmetries

Imperial College

$B_d \to K^* \gamma$ and $B_s \to \phi \gamma$ yields for 2 fb $^{-1}$

	$B_d \rightarrow K^* \gamma$	$B_s \rightarrow \phi \gamma$
Visible BR	$2.9 \cdot 10^{-5}$	$2.2 \cdot 10^{-5}$
η_{rec}	5.6%	5.4%
η_{sel}	13.3%	11.7%
η_{trg}	46%	44%
η_{tot}	0.34%	0.28%
Signal Yield	$73\ 000$	11 000
B/S	0.59 ± 0.26	< 0.55

The B mass resolution is $70 \ {\rm MeV}.$

Imperial College

$B_d \to K^* \gamma$ and $B_s \to \phi \gamma$ yields for 2 fb $^{-1}$

	$B_d {\rightarrow} K^* \gamma$	$B_s \rightarrow \phi \gamma$
Visible BR	$2.9 \cdot 10^{-5}$	$2.2 \cdot 10^{-5}$
η_{rec}	5.6%	5.4%
η_{sel}	13.3%	11.7%
η_{trg}	46%	44%
η_{tot}	0.34%	0.28%
Signal Yield	$73\ 000$	11 000
B/S	0.59 ± 0.26	< 0.55

Running on 13 minutes equivalent of $b\overline{b}$ events one already gets a peak.

The B mass resolution is $70 \ {\rm MeV}.$

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 40/33

$B_d \to K^* \gamma$ and $B_s \to \phi \gamma$ yields for 2 fb $^{-1}$

	$B_d \rightarrow K^* \gamma$	$B_s \rightarrow \phi \gamma$
Signal Yield	$73\ 000$	11 000
B/S	0.59 ± 0.26	< 0.55

Running on 13 minutes equivalent of $b\overline{b}$ events one already gets a peak.

Expecting a statistical error $A_{\rm CP}(B_d \rightarrow K^* \gamma)$ of 0.5%

- → Will be dominated by systematics
 - K^{\pm} interaction with matter
 - B_d , \overline{B}_d production asymmetries ...

[LHCb note 2007-030]

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 40/33

R_K in $B_u ightarrow \ell \ell K$

$$R_X = \frac{\frac{4m_{\mu}^2}{\int ds} ds \frac{d\Gamma(B \to X\mu^+\mu^-)}{ds}}{\int \frac{4m_{\mu}^2}{q_{\max}^2} ds \frac{d\Gamma(B \to Xe^+e^-)}{ds}} \underset{Am_{\mu}^2}{\leq} \begin{cases} 1.000 \pm 0.001 & X = K \\ 0.991 \pm 0.002 & X = K^* \end{cases}$$

[Hiller & Krüger, PRD69 (2004) 074020]

Corrections can be $\mathcal{O}(10\%)$ for instance with neutral Higgs boson exchanges.

Imperial College

 $R_K \text{ in } B_u \to \ell \ell K$

$$R_{X} = \frac{\int_{4m_{\mu}^{2}}^{q_{\text{max}}^{2}} ds \frac{d\Gamma(B \rightarrow X\mu^{+}\mu^{-})}{ds}}{\int_{4m_{\mu}^{2}}^{q_{\text{max}}^{2}} ds \frac{d\Gamma(B \rightarrow Xe^{+}e^{-})}{ds}}{10^{4}}$$

$$R_{K} - 1 \propto \mathcal{B}(B_{s} \rightarrow \mu\mu)$$

$$R_{K} - 1 \propto \mathcal{B}(B_{s} \rightarrow \mu\mu)$$

$$10^{2}$$

$$R_{K} - 1 \propto \mathcal{B}(B_{s} \rightarrow \mu\mu)$$

$$10^{2}$$

$$10^{2}$$

$$10^{2}$$

$$10^{2}$$

$$10^{2}$$

$$10^{2}$$

$$10^{2}$$

$$10^{2}$$

$$10^{2}$$

$$10^{2}$$

$$10^{2} \times BR(B_{s} \rightarrow \mu\mu)$$

$$10^{2} \times BR(B_{s} \rightarrow \mu\mu)$$

• No CP-phases beyond the SM

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 41/33

[Hiller & Krüger, PRD69 (2004) 074020]

 R_K in $B_u \to \ell \ell K$

Experimental status:

	BaBar ($384\cdot 10^6 \ B\overline{B}$)
	[PRL 102:091803,2009]
R_K	$0.40 {}^{+ 0.30}_{- 0.23} \pm 0.02$
R_{K^*}	$1.01 {}^{+ 0.42}_{- 0.32} \pm 0.08$
	Belle ($657 \cdot 10^{6} BB$)
	Belle ($657 \cdot 10^6 BB$) [arXiv:0904.0770v1]
R_K	Belle (657 \cdot 10 ⁶ BB) [arXiv:0904.0770v1] $1.03 \pm 0.17 \pm 0.05$
$\frac{R_K}{R_{K^*}}$	Belle $(657 \cdot 10^6 BB)$ [arXiv:0904.0770v1] $1.03 \pm 0.17 \pm 0.05$ $0.83 \pm 0.17 \pm 0.05$

 $B_s
ightarrow \mu\mu$: The present CDF limit is $5.8 \cdot 10^{-8}$ at 95% CL

[PRL 100:101802,2008]

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 41/33

 R_K in $B_u \to \ell \ell K$

At LHCb for 10 fb^{-1} :

Species	Yield	Error
$B \rightarrow eeK$	$9\ 240\pm379$	4.10%
$B \to \mu \mu K$	$18\ 774\pm227$	1.21%

Including control samples, one gets an error:

 $ightarrow {f R_K} = 1$ (fixed) ± 0.043

for $10~{\rm fb}^{-1}$. [LHCb note 2007-034]

Imperial College

 R_K in $B_u \to \ell \ell K$

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 41/33

 R_K in $B_u \to \ell \ell K$

Imperial College

London P. Koppenburg

Rare Decays— 13/07/09 — PPAP community review – p. 41/33