Plan of the lectures:

Flavour physics in the LHC era

B-physics phenomenology: mixing, CP violation, and rare decays
Time evolution and time-dependent asymmetries of B_{d,s}
Production & tagging @ hadron colliders
CPV in B_s mixing
CPV in charged B decays [measuring γ]
Rare FCNC B decays
The ΔF=1 effective Hamiltonian
Exclusive rare B decays [B → K*µ+µ- & B → µ+µ-]

Flavour physics beyond the SM: models and predictions

G. Isidori – B Physics

*Time evolution and time-dependent asymmetries of B*_{d.s}

 $B_{d,s}$ mass eigenstates: $|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle = |B_H\rangle = p|\overline{B}^0\rangle - q|B^0\rangle$

$$\frac{q}{p} = \arg(A_{\text{box}}) + O(10^{-3} \text{ due to } \Gamma)$$

G. Isidori – B Physics

*<u>Time evolution and time-dependent asymmetries of <i>B*_{d,s}</u>

 $B_{d,s}$ mass eigenstates: $|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle = |B_H\rangle = p|\overline{B}^0\rangle - q|B^0\rangle$

G. Isidori – B Physics

*<u>Time evolution and time-dependent asymmetries of <i>B*_{d,s}</u>

 $B_{d,s}$ mass eigenstates: $|B_L\rangle = p|B^0\rangle + q|\overline{B}^0\rangle = |B_H\rangle = p|\overline{B}^0\rangle - q|B^0\rangle$

The study of time-dependent decays of neutral B into CP eigenstates is a marvelous tool to extract CPV phases in a clean way:

If $|\lambda_f| = 1$, i.e. if A_f is dominated by a single weak phase, then : $\Gamma(B^0(t) \to f) \propto e^{-\Gamma_B t} \left[1 - \eta_f \operatorname{Im}(\lambda_f) \sin(\Delta m_B t) \right]$ The study of time-dependent decays of neutral B into CP eigenstates is a marvelous tool to extract CPV phases in a clean way:

If $|\lambda_f| = 1$, i.e. if A_f is dominated by a single weak phase, then : $\Gamma(B^0(t) \to f) \propto e^{-\Gamma_B t} \left[1 - \eta_f \operatorname{Im}(\lambda_f) \sin(\Delta m_B t) \right]$

Key points to successfully use this method:

- [TH]: identify final states such that A_f is dominated by a single weak phase
- [EXP]: <u>flavour tagging</u> and <u>time-dependent resolution</u> are crucial !!

When is A_f dominated by a single weak phase ?

 $|B_{d}\rangle \rightarrow |\Psi K_{s}\rangle$ I. $[b+d \rightarrow c\bar{c}s+d]$ V_{ub} C,t $g(\gamma,Z)$ С real $O(\lambda^2)$ $O(\alpha_{s}\lambda^{4})$ real $O(\alpha_{\rm s}\lambda^2)$ dominant | amplitude pollution $\leq 1 \%$ $\operatorname{Im}(\lambda_f) = \sin(2\beta)$ $V_{tb}^{*}V_{ts} = -V_{cb}^{*}V_{cs} - V_{ub}^{*}V_{us}$ (from the mixing) *flat triangle* extremely precise

constraint in the $\rho-\eta$ plane

Golden channel for B factories

A. Bvan, Lepton-Photon 2009

The golden channel for B_s mixing is

- No constraint in the $\rho-\eta$ plane
- But very significant constraint on NP

N.B.: $|\Psi\phi\rangle$ is not a CP eigenstate (different angular-momentum states) \Rightarrow angular analysis required to extract the CPV phase

An interesting category are the so-called $b \rightarrow s$ penguin modes:

Unfortunately there are not many *pure penguin* channels of this type, moreover, even for pure penguin modes, it is very difficult to control the theory error below the $\sim 10\%$ level

An interesting category are the so-called b—s penguin modes: were $sin(2\beta^{eff}) = sin(2\phi^{eff})$ HFAG

- Best observables [high stat. + full Dalitz Plot analysis] show no significant effect
- We are already close to the level of irredcible th. errors
 [remember the ε'/ε lesson...]

					PRELIMINABY
b→ccs	World Average				0.68 ± 0.03
_ [BaBar				0.21 ± 0.26 ± 0.11
Š I	Belle		<mark>∕ ç</mark>		0.50 ± 0.21 ± 0.06
÷ /	Average		보스		0.39 ± 0.17
	BaBar		-		$0.58 \pm 0.10 \pm 0.03$
Ϋ́Υ	Belle			-	$0.64 \pm 0.10 \pm 0.04$
<u> </u>	Average		-		0.61 ± 0.07
Ľ Ľ	BaBar		E		$0.71 \pm 0.24 \pm 0.04$
s E	Belle			2	$0.30 \pm 0.32 \pm 0.08$
ر س	Average				0.58 ± 0.20
<u>ه</u> ا	BaBar				$0.40 \pm 0.23 \pm 0.03$
Ϋ́Ε	Belle		A 0		$0.33 \pm 0.35 \pm 0.08$
°⊭ /	Average		<u> </u>		0.38 ± 0.19
y E	BaBar				$1.61_{-0.24}^{+0.22} \pm 0.09 \pm 0.08$
~ /	Average				0.61 +0.25
(n)	BaBar		U b		0.62 ^{+0.25} _{-0.30} ± 0.02
Ϋ́Ε	Belle		<u> </u>		$0.11 \pm 0.46 \pm 0.07$
8	Average		: <u><u></u> <u></u></u>		0.48 ± 0.24
	BaBar			1	0.89 ± 0.07
¥ ک	Belle	-	****	8	$0.18 \pm 0.23 \pm 0.11$
ر ^م	Average				0.84 ± 0.07
х° Г	BaBar 🗧 🍯	6	{		$\textbf{-0.72} \pm 0.71 \pm 0.08$
° _E [Belle	* 8	-		$-0.43 \pm 0.49 \pm 0.09$
° /	Average	•			-0.52 ± 0.41
Ŷ	BaBar			2	$0.76 \pm 0.11 \substack{+0.07 \\ -0.04}$
Y I	Belle		-	<mark>.</mark> ($.68 \pm 0.15 \pm 0.03 ^{+0.21}_{-0.13}$
: 🕹 🖊	Average			2	0.73 ± 0.10
2	_1		0		1 0

65th Scottish Universities Summer School in Physics (2009)

Production & flavour tagging @ hadron colliders

@ B factories:

```
e^+ + e^- \rightarrow \Psi(4S) \rightarrow B \overline{B}
```

• clean environment [$\sigma(B) / \sigma(bkg) \sim 0.3$]

coherent quantum state for neutral B

65th Scottish Universities Summer School in Physics (2009)

Production & flavour tagging @ hadron colliders

@ B factories:

$$e^+ + e^- \rightarrow \Psi(4S) \rightarrow B \overline{B}$$

• clean environment [$\sigma(B) / \sigma(bkg) \sim 0.3$]

• coherent quantum state for neutral B

@ hadron colliders:

- dirty environment [σ(B) /σ(bkg) < 0.01]
 incoherent quantum state
- high stat. [~ 10^{12} B pairs / 1 fb⁻¹]
- all hadrons with b-quarks produced

Flavour tagging at LHC:

• Kaon tagging most powerful for LHCb (K^{\pm} from the "opposite side" b \rightarrow c \rightarrow s)

Tagging power $\varepsilon D^2 = \varepsilon (1-2w)^2$ (in %)

Tag	LHCb	CMS	ATLAS
Muon	1.0	0.7	0.7
Electron	0.4	0.5	0.3
Kaon	2.4	—	—
Jet/vertex charge	1.0	2.3	1.6
Same side	2.1	2.2	2.1

• Combined power for $B_s \sim 6\%$ (LHCb) (*cf* ~ 1% at CDF/D0, ~ 30% at B Factories) Lower for B^0 (~ 4%) due to reduced same-side tagging power

▶ <u>CPV in B_s mixing</u>

The CP-violating phase of the B_s mixing amplitude is the last missing ingredients about down-type $\Delta F=2$ transitions [K, B_d , B_s]: a key element to understand if there is room for new sources of flavour symmetry breaking beyond the SM.

Experimentally quite challenging:

- Non-trivial angular analysis needed to separate the various decay amplitudes
- Fast oscillations
- Simultaneous fit of the width difference $(\Delta\Gamma_s)$ and the mixing phase

Measuring mixing parameters with $B_s{\rightarrow}J/\psi\phi$

- 1. Reconstruct decays from stable products:
 - $B_s \rightarrow J/\Psi[\mu^+\mu^-] \Phi[K^+K^-]$
 - $B_d \rightarrow J/\Psi[\mu^+\mu^-] K^{*0}[K^+\pi^-]$ (control sample)
- 2. <u>Measure lifetime</u> $ct = m_B * L_{xy}/p_T$ •Proper time resolution essential to resolve oscillations
- $\bar{B}_{S}^{0} \qquad K^{+}$
- 3. Measure decay angles in transversity base:

 $\vec{w} = (\vartheta, \phi, \psi)$

- 4. <u>Identify Bs flavor</u> at production time:
 •Flavor Tagging (Tag decision ξ)
- 5. Perform maximum likelihood fit:
 - Likelihood in m, ct, w, ξ

Combined Tevatron result (NEW)

- Compared to HFAG 2008: Larger CDF sample + Better accounting for tails ⇒ same level of SM agreement.
- Both CDF and D0 currently working on **2x** samples.
- Expect improved precision by simultaneous fit of CDF and D0 samples.

G. Punzi, EPS 2009

CPV in charged B decays

CP violation in charged modes is usually easy from the experimental point of view, but it is hard to be predicted/interpreted from the theoretical point of view [no control on non-perturbative hadronic amplitudes]

$$\Gamma(\mathbf{B}^{+} \rightarrow f) = |\mathbf{A}_{1} + e^{-i\gamma} e^{i\delta} \mathbf{A}_{2}|^{2}$$

<u>CPV in charged B decays</u>

CP violation in charged modes is usually easy from the experimental point of view, but it is hard to be predicted/interpreted from the theoretical point of view [no control on non-perturbative hadronic amplitudes]

A notable exception are the $B^{\pm} \rightarrow D(\overline{D}) + K^{\pm} \rightarrow f_{CP} + K^{\pm}$ decays

- measured by looking at different CP eigenstates

Clean way to extract phase $\gamma = \arg(V_{ub})$:

- Gronau-London-Wyler/Atwood-Dunietz-Soni methods: $B^{\pm} \rightarrow (K\pi, \pi) + K^{\pm}$
- Giri-Grossman-Soffer-Zupan method: $B^{\pm} \rightarrow (K_{S}\pi^{+}\pi^{-}) + K^{\pm}$

full Dalitz-Plot analysis

65th Scottish Universities Summer School in Physics (2009)

65th Scottish Universities Summer School in Physics (2009)

<u>Rare FCNC B decays</u>

Similarly to $\Delta F=2$ mixing amplitudes, rare decays mediated by *FCNC amplitudes* are very interesting to perform *precision* tests of flavor dynamics beyond the SM

- No SM tree-level contribution
- Strong suppression within the SM because of CKM hierarchy
- Predicted with high precision within the SM at the partonic level: NNLO pert. calculations available for all the main B modes ($m_b \gg \Lambda_{QCD}$)

65th Scottish Universities Summer School in Physics (2009)

And th more r	e ∆F=1 sector i ich	LAVOUR COUPLIN	NG:				
		$b \rightarrow s ~(\sim \lambda^2)$		$b \rightarrow d (\sim \lambda^3)$	$s \rightarrow d (\sim \lambda^5)$		
ELECTROWEAK STRUCTURE	$\Delta F=2$ box	$(Q_L^{\ b} \Gamma Q_L^{\ s})^2$		•••			
	$\Delta F=1$ 4-quark box			The FCNC matrix	k:		
	gluon penguin		each bo	ndependent			
	γ penguin		$SU(3) \times$	SU(2)×U(1)-invariant operators			
	Z ⁰ penguin		\mathscr{L}_{e}	$E_{\text{eff}} = \mathscr{L}_{\text{SM}} + \sum_{d \ge 5} \frac{c_n}{\Lambda^{d-4}} O_n^d$			
	H ⁰ penguin						

STRUCTURE

ELECTROWEAK

$b \rightarrow s (\sim \lambda^2)$ $b \rightarrow d (\sim \lambda^3)$ $s \rightarrow d (\sim \lambda^5)$ ΔM_{Bs} ΔM_{Bd} $\Delta F=2$ box $\Delta M_{\rm K}, \ \epsilon_{\rm K}$ $A_{CP}(B_s \rightarrow \psi \phi)$ $A_{CP}(B_d \rightarrow \psi K)$ $\Delta F=1$ $B_d \rightarrow \phi K, B_d \rightarrow K\pi, \dots | B_d \rightarrow \pi\pi, B_d \rightarrow \rho\pi, \dots$ ϵ'/ϵ . K $\rightarrow 3\pi$ 4-quark box gluon $B_d \rightarrow X_s \gamma, B_d \rightarrow \phi K,$ $B_d \rightarrow X_d \gamma, B_d \rightarrow \pi \pi, \dots \mid \epsilon'/\epsilon, K_I \rightarrow \pi^0 l^+ l^-, \dots$ penguin $B_d \rightarrow K\pi, ...$ $B_d \rightarrow X_s l^{\dagger} l^{\dagger}, B_d \rightarrow X_s \gamma \mid B_d \rightarrow X_d l^{\dagger} l^{\dagger}, B_d \rightarrow X_d \gamma$ γ $\varepsilon'/\varepsilon, K_{T} \rightarrow \pi^{0} l^{+} l^{-}, \ldots$ $B_d \rightarrow \phi K, B_d \rightarrow K\pi, \dots | B_d \rightarrow \pi\pi, \dots$ penguin $|B_d \rightarrow X_d l^+ l^-, B_d \rightarrow \mu \mu|$ $\varepsilon'/\varepsilon, K_{I} \rightarrow \pi^{0} l^{+} l^{-},$ $B_d \rightarrow X_s l^+ l^-, B_s \rightarrow \mu \mu$ Z^0 $B_d \rightarrow \phi K, B_d \rightarrow K\pi, \dots \mid B_d \rightarrow \pi\pi, \dots$ $K \rightarrow \pi \nu \nu, K \rightarrow \mu \mu, \dots$ penguin H^0 $K_{L,S} \rightarrow \mu \mu$ $B_d \rightarrow \mu \mu$ $B_s \rightarrow \mu \mu$ penguin

FLAVOUR COUPLING:

65th Scottish Universities Summer School in Physics (2009)

<u>Rare FCNC B decays</u>

Similarly to $\Delta F=2$ mixing amplitudes, rare decays mediated by *FCNC amplitudes* are very interesting to perform *precision* tests of flavor dynamics beyond the SM

- No SM tree-level contribution
- Strong suppression within the SM because of CKM hierarchy
- Predicted with high precision within the SM at the partonic level: NNLO pert. calculations available for all the main B modes ($m_b \gg \Lambda_{OCD}$)

• The key point is the relation between patonic & hadronic worlds

Fully inclusive decays usually good precision thanks to heavy-quark symmetry

$$\Gamma(b \to s\gamma) \xrightarrow{m_b \to \infty} \Gamma(B \to X_s\gamma)$$

Exclusive decays generally more difficult than inclusive, with notable exceptions:

 $B \rightarrow (K^*,K) + \mu^-\mu^+, B \rightarrow \mu^-\mu^+$

<u> The ΔF=1 effective Hamiltonian</u>

The most efficient tool to deal with the various scales of the problem is the construction of an effective Hamiltonian

1st step: Integrating out all the heavy d.o.f around or above the electroweak scale (including the heavy SM fields)

The interesting short-distance info is encoded in the $C_i(M_W)$ (*initial conditions*) of the Wilson coefficients of the FCNC operators

 2^{nd} step: Evolution of H_{eff} down to low scales using RGE

Penguin operators:

$$\begin{array}{c}
 H_{eff} = \Sigma_{i} C_{i}(\mu) Q_{i} \\
 H_{eff} \\
 H_{eff} = \Sigma_{i} C_{i}(\mu) Q_{i} \\
 H_{eff} \\$$

Sources of long-distance effects: [*dilution of the interesting short-distance info*]:

• Mixing of the four-quark Q_i into the FCNC Q_i [perturbative long-distance contribution]

- <u>Small</u> in the case of <u>electroweak penguins</u> (Q_{10A}) because of the powerlike GIM mechanism [mixing parametrically suppressed by $O(m_c^2/m_t^2)$]
- Large for gluon penguins

3rd step: Evaluation of the hadronic matrix elements

 $A(B \rightarrow f) = \langle f \mid \Sigma_i C_i(\mu) Q_i \mid K \rangle$

- sensitivity to long-distances (*cc* threshold, m_c dependence,...)
- distinction between inclusive (OPE + $1/m_{b,c}$ expansion) and exclusive modes (hadronic form facotrs)
- irreducible large theory errors in the case of exclusive non-leptonic final states

Putting all the ingredients together in the case of $B \rightarrow X_s \gamma$ [at present the only case which allows a significant theory vs. exp. comparison]:

NNLO SM th. estimate: $B(B \rightarrow X_s \gamma) = (3.15 \pm 0.23) \times 10^{-4}$ [Misiak *et al.* '07] To be compared with: $B(B \rightarrow X_s \gamma) = (3.57 \pm 0.24) \times 10^{-4}$ [2009 exp. WA]

A great success for the SM... ...and a great challenge for many of its extensions ! Putting all the ingredients together in the case of $B \rightarrow X_s \gamma$ [at present the only case which allows a significant theory vs. exp. comparison]:

Exclusive rare B decays

The accuracy on *exclusive* FCNC *B* decays of the type $B \rightarrow H+(\gamma, l^+l^-)$ depends on the th. control of $B \rightarrow H$ hadronic form factors :

$$A(B \rightarrow f) = \sum_{i} C_{i}(\mu) \langle f | Q_{i} | B \rangle(\mu) \qquad \mu \sim m_{b}$$

⇒ several progress in the last few years [SCET, LCSR, Lattice] but typical errors still ~ 30%

The most difficult exclusive observables are the total branching ratios however, *f.f.* uncertainties can be considerably reduced in appropriate ratios or <u>differential distributions</u>, or considering very peculiar final states.

$$\Rightarrow$$
 Two notable examples:

I.
$$A_{\text{FB}} (B \to K^* l^+ l^-)$$
 II. $\Gamma(B \to l^+ l^-)$

I. The lepton FB asymmetry in $B \to K^* l^+ l^-$

$$A_{FB} = \int \frac{d^2 B(B \to K^* \mu^+ \mu^-)}{ds \, d \cos \theta} \, sgn(\cos \theta) \propto \Re \left[C_{10}^* \left[s \, C_9 + r(s) \, C_7 \right] \right]$$

$$\theta = \text{angle between } \mu^+ \& B \text{ momenta} \qquad \text{th. error } \sim 5\%$$

- Direct access to the *relative phases* of the C_i
- Proportional to C₁₀ (interf. of axial & vector currents)
 ⇒ small QCD corrections
- Very useful probe of non-standard scenarios
- Hadronic uncertainties substantially decreased with a proper normalization:

in the dilepton rest frame

 $\overline{A}_{FB} = \frac{d\Gamma(\cos\theta > 0)/ds - d\Gamma(\cos\theta < 0)/ds}{d\Gamma(\cos\theta > 0)/ds + d\Gamma(\cos\theta < 0)/ds}$

I. The lepton FB asymmetry in $B \to K^* l^+ l^-$

The following main features turns out to be independent from the details of the form factors:

•
$$A_{FB}(s) = 0$$
 for $s = q^2/m_b^2 \sim C_7/C_9$

- $\int \mathrm{ds} A_{FB}[B] > 0$
- $\int \mathrm{ds} A_{FB}[B] + A_{FB}[\overline{B}] < 0.1\%$

CPV observable

Much more interesting than CP asym. in the rates, since $A_{FB} \sim \text{Re}[\text{C}_{10}^{*}\text{C}_{9}]$

65th Scottish Universities Summer School in Physics (2009)

I. The lepton FB asymmetry in $B \to K^* l^+ l^-$

The following main features turns out to be independent from the details of the form factors:

•
$$A_{FB}(s) = 0$$
 for $s = q^2/m_b^2 \sim C_7/C_9$

• $\int \mathrm{ds} A_{FB}[B] > 0$

•
$$\int \mathrm{ds} A_{FB}[B] + A_{FB}[\overline{B}] < 0.1\%$$

CPV observable

Much more interesting than CP asym. in the rates, since $A_{FB} \sim \text{Re}[\text{C}_{10}^{*}\text{C}_{9}]$ $\overline{A}_{FB} = \frac{d\Gamma(\cos\theta > 0)/ds - d\Gamma(\cos\theta < 0)/ds}{d\Gamma(\cos\theta > 0)/ds + d\Gamma(\cos\theta < 0)/ds}$

Results from B factories, limited by statistics, still allow large room for non-standard effects

 $q^2(GeV^2/c^2)$

II. $B_{s,d} \rightarrow l^+ l^-$

A special case among exclusive *B* decays:

- No vector-current contribution [th. error of the s.d. calculation ~ 1%]
- Hadronic matrix element relatively simple [f_B within the SM]
- Very clean signature
- <u>Strong sensitivity to scalar currents beyond the SM</u> [Higgs penguin]
 - ⇒ order-of-magnitude enhancements possible in multi-Higgs models, even without new flavor structures [SUSY @ large tan β]

$$B(B_s \to \mu \mu)_{SM} = 3.2(2) \times 10^{-9}$$

 $B(B_d \rightarrow \mu \mu)_{SM} \approx 1.0 \times 10^{-10}$

e channels suppressed by $(m_e/m_\mu)^2$

τ channles enhanced by $(m_{\tau}/m_{\mu})^2$

II. $B_{s,d} \rightarrow l^+ l^-$

A special case among exclusive *B* decays:

- No vector-current contribution [th. error of the s.d. calculation ~ 1%]
- Hadronic matrix element relatively simple [f_B within the SM]
- Very clean signature
- <u>Strong sensitivity to scalar currents beyond the SM</u> [Higgs penguin]
 - ⇒ order-of-magnitude enhancements possible in multi-Higgs models, even without new flavor structures [SUSY @ large tan β]

Exercise [to understand why $B_{s,d} \rightarrow l^+ l^-$ is interesting]:

- Compute $B_u \rightarrow lv$ at the tree-level and compare it with the result obtained in the gauge-less limit
- Help: $\langle 0 | \bar{b} \gamma_{\mu} \gamma_5 u | B(p) \rangle = i f_B p_{\mu}$ $\langle 0 | \bar{b} \gamma_5 u | B(p) \rangle = i f_B m_B^2 / m_b$