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QCD at high density and temperature

heavy-ion accelerators, experiments, global collision 
characterization

QGP observables and experimental probes

the LHC heavy-ion program and ALICE the dedicated 
heavy-ion detector
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What is the universe made of?
• elementary particles make up 

0.1% of the mass in the universe

✓ SM Higgs mechanism

• composite particles (hadrons) 
can account for ~ 4%

✓ QCD chiral symmetry 
breaking

• dark Matter 23%

• dark Energy 72.9%

• the 4% are still not understood 
very well and the other 96% are 
a complete mystery!
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The Standard Model
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The Standard Model
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Quantum Electro Dynamics (QED) Quantum Flavor Dynamics (QFD)

- Quantum Chromo Dynamics 
(QCD)

electromagnetic force weak force

strong force

(forces)
t

The Standard Model
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u(r)

u(b)

g(rb)
-

strong force

gluons carry color! gluon self-coupling!

QCD mechanism of confinement

QED QCD
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mass generation in the strong 
interaction
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Quantum Chromo Dynamics

• theory of the strong interaction

• QCD is an asymptotic free theory

• pertubation theory can be applied 
at short distances/high momentum 
transfer, source of much of our 
current knowledge of the theory

• non-perturbative features: 
confinement and chiral symmetry 
breaking still poorly understood from 
first principles
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What happens when you heat and compress matter 
to very high temperatures and densities?
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Based on Krishna Rajagopal and Frank Wilczek: Handbook of QCD



11



11

Electroweak phase 
transition
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Electroweak phase 
transition

QCD phase transition

100,000 x Tcore sun

Non perturbative!
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Early Universe: degrees of freedom
64 Standard Cosmology 

Since the energy density and pressure of a non-relativistic species (i.e., 

one with mass m » T) is exponentially smaller than that of a relativistic 

species (i.e., one with mass m <t:: T), it is a very convenient and good 

approximation to include only the relativistic species in the sums for PR 

and pi, in which case the above expressions greatly simplify: 

71"2 

PR = 30 g•T \ 

71"2 (3.61) 
PR = PR/3 = 90 g•T \ 

where g. counts the total number of effectively massless degrees of freedom 

(those species with mass mi <t:: T), and 

( 
Ti)4 7 (Ti)4 (3.62) 

g. = ."E gi T + "8. "E. gi T 
1.==jerm1.0n6 

The relative factor of 7/8 accounts for the difference in Fermi and Bose 

statistics. Of course, it is a straightforward matter to obtain an exact 

expression for g.(T) from (3.59).5 Note also that g. is a function of T 

since the sum runs over only those species with mass mi <t:: T. For T <t:: 
MeV, the only relativistic species are the 3 neutrino species (assuming that 

they are very light) and the photon; since Tv = (4/11)1/3T-y (see below), 

g.( <t:: MeV) = 3.36. For 100 MeV T 1 MeV, the electron and positron 

are additional relativistic degrees of freedom and Tv = T-y; g. = 10.75. For 
T 300 Ge V, all the species in the standard model-8 gluons, W± ZO, 3 

generations of quarks and leptons, and 1 complex Higgs doublet-should 

have been relativistic; g. = 106.75. The dependence of g.(T) upon T is 

shown in Fig. 3.5. 
During the early radiation-dominated epoch (t ;::; 4 X 1010 sec) P pRi 

and further, when g. const, PR = PR/3 (i.e., w = 1/3) and R(t) ()( t
1

/ 
2

• 

From this it follows  

T2  
H = 1.669!/2_-

mpl 

( T \-2 _ 
._m.p, 

_ 

3.4 Entropy 65 
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Fig. 3.5: The evolution of g. (T) as a function of temperature in the SU(3)c @ 

oSU(2)L@ U(l)y theory. 

3.4 Entropy I 

Throughout most of the history of the Universe (in particular the early t 

Universe) the reaction rates of particles in the thermal bath, r inh were ij
. much greater than the expansion rate, H, and local thermal equilibrium  

(LTE) should have been maintained. In this case the entropy per comov-  ,
ing volume element remains constant. The entropy in a comoving volume 

provides a very useful fiducial quantity during the expansion of the Uni-

verse. 
ii,In the expanding Universe, the second law of thermodynamics, as ap- r

plied to a comoving volume element of unit coordinate volume6 and phys-  

ical volume V = R3, implies that ij•  
" 

TdS = d(pV) + pdV = d[(p + p)V] - Vdp, (3.64) 
I 
I

_ p and p are the equilibrium energy density and pressure. Moreover, II.

t 

Kolb and Turner: the early universe



rough estimate: EoS and degrees of 
freedom

➡ energy density of g massless degrees 
of freedom

➡ hadronic matter dominated by lightest 
mesons (π+, π-, and π0)

➡ deconfined matter, quarks and gluons

➡ during phase transition large increase 
in degrees of freedom !
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p =
1
3
ε = gπ

2

90
T 4ideal gas Equation of State:

ε
T 4 = g

π 2

30
ε
T 4 = 3

π 2

30

g = 2spin × 8gluons +
7
8
× 2flavors × 2quark/anti-quark × 2spin × 3color

ε
T 4 = 37

π 2

30



rough estimate: QCD phase 
transition temperature

• confinement due to bag pressure B (from the QCD vacuum)

• B1/4~ 200 MeV

• deconfinement when thermal pressure is larger than bag pressure
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p =
1
3
ε = g

π2

90
T 4

Tc = (
90B

37π2
)1/4 = 140 MeV

crude estimate!



QCD on the Latice
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F. Karsch, E. Laermann and A. Peikert,  PLB  
478 (2000) 447

TC ~ 170 MeV,  εC ~ 0.6 GeV/fm3

at the critical temperature a 
strong increase in the 
degrees of freedom

✓ gluons, quarks & color!

not an ideal gas!

✓ residual interactions

at the phase transition dp/dε 
decreases rapidlyp =

1
3
ε = g

π2

90
T 4

gH ≈ 3 gQGP ≈ 37

g = 2spin × 8gluons +
7
8
× 2flavors × 2qq̄ × 2spin × 3color
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so far only a theory view 
of the world!
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so far only a theory view 
of the world!
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so far only a theory view 
of the world!
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explore experimentally the properties of this 
Quark Gluon Plasma
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Europe Africa
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understanding the phase transition

• experimentally we like to determine:

✓ the effective number of hadronic degrees of 
freedom gH at TC

✓ the change in number of active degrees of 
freedom  gQGP - gH

✓ the vacuum pressure B or latent heat

✓ the (transport) properties of the QGP just above 
the  phase transition temperature
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The macroscopic quantities of the QGP will give us 
better understanding of  the underlying microscopic 
theory (QCD) in the non-perturbative regime
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mechanism of confinement mass generation in the 
strong interaction
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what are the new states 
of matter at exceedingly 
high temperature and 

density?



How?

Nuclear Matter
(confined)

20



How?

Hadronic Matter
(confined)

20



How?

Quark Gluon Plasma
deconfined !

transition expected to 
occur around 1 GeV/fm3
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How?

study phase transition in 
controlled lab conditions 
by colliding heavy-ions
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Quark Gluon Plasma
RHIC
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Accelerators and 
Experiments
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CERN and BNL
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Fixed Target Detector

24



Event Display
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Detector at Collider
coils magnet

SVT

EMC

TPC

TOF

FTPC

electronics 
platforms

large acceptance

✓ event-by-event 
capabilities

large Time Projection 
Chamber in solenoidal 
magnetic field

silicon tracking, 
electromagnetic 
calorimeter, time of 
flight detector

~ 500 collaborators
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STAR at RHIC

Online Level 3 Trigger Display 
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The Large Hadron Collider 
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The Large Hadron Collider 
(The Large Heavy ion Collider)



ALICE at the LHC

~1000 collaborators from 109 institutes in 31 countries

1. L3 magnet

2. HMPID

3. TRD

4. EMCAL

5. TPC

6. PHOS

7. ITS

8. TOF

9. ZDC

10. Muon system

2

1

3

4

5

6

7

8

9

10
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ALICE at the LHC

30

simulation! real events 2010



Event Characterization
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Impact Parameter

• impact parameter b

• perpendicular to beam 
direction

• connects centers of the 
colliding ions

slope:

 2π dσ/dN

b
2R

32



Centrality Determination (I)

spectators

participants

b

33

centrality characterized by:
1. Npart, Nwounded: number of nucleons which suffered at 

least one inelastic nucleon-nucleon collision
2. Ncoll, Nbin: number of inelastic nucleon-nucleon collisions
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✓ nuclear density from Wood-
Saxon distribution

✓ nucleons travel on straight lines, 
no deflection after NN collision

✓ NN collision cross section from 
measured inelastic cross section 
in p+p

✓ NN cross section remains 
constant independent of how 
many collisions a nucleon 
suffered 

Nucleus A R a

Au 197 6.38 0.535

Pb 208 6.68 0.546

√S (GeV) σin,pp (mb)

20 32

200 42

5500 ~70

Glauber Model Calculations 
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wounded nucleon scaling

binary scaling

number of participating nucleons scales 
with volume ~ 2A

A

L~A1/3

number of NN collisions, point like, scales 
with ~ A4/3

Wounded nucleons and binary collisions
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Centrality determination (II)
Zero-Degree-Calorimeter 
(ZDC) measures energy 
of all spectator nucleons

spectatorsFixed target

Collider
Zero-Degree-Calorimeter 
(ZDC) measures energy 
of all unbound spectator 
nucleons

➡charged fragments (p, d, 
and heavier) are 
deflected by accelerator 
magnets

➡EZDC small for very 
central and very 
peripheral collisions, 
ambiguous



37

✓ peripheral collisions, 
largest fraction cross 
section

✓ many spectators

✓ “few” particles produced

Peripheral Event
From real-time Level 3 display

b

Centrality determination (III)
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Centrality determination (IV)

✓ impact parameter b = 0

✓ central collisions, small cross 
section

✓ no spectators

✓ many particles produced

Central Event
From real-time Level 3 display
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Centrality determination (ALICE)

✓Determines the magnitude of the 
impact parameter

%σtot <Npart> <b>

0-5 386 2.48

20-30 177 7.85

60-70 25 12.66
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The Reaction Plane

E
d3N
d3p

=
d3N

ptdptdyd(φ − ΨR )

x, b

y
z

determine the angle of the reaction plane ψR

y

x

!
R



Observables/Probes
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Time Evolution
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different observables
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jetsJ/ψγ e πp
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Particle Production

η

dN
ch

ar
ge

d/
dη

19.6 GeV 130 GeV 200 GeV

  
y = 1

2
ln

p0 + pz

p0 − pz

⎛

⎝⎜
⎞

⎠⎟  
η = − ln tan θ

2
⎛
⎝⎜

⎞
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⎡

⎣
⎢

⎤

⎦
⎥

more than 4000 charged particles produced at 130 GeV!
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Particle Production

• particle production in AA and e+e- collisions follows the same scaling 
as function of beam energy, and is larger than in pp collisions

• leading particle effect
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Particle Production

• particle production per 
participant pair is 
approximately constant as 
function of centrality in AA 

• yield per participant in AA 
similar as in e+e- annihilation 

part
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Available Energy: baryon-stopping

• in pp collisions 50% of beam energy available for particle production

• in AA collisions 70-80% of incoming energy available for particle 
production (in accordance with expectations from pA)
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Transverse Energy and Energy Density

εBj =
1

πR2
1
τ 0

dET

dy

δz = τ 0δy

πR2

εBj = 4.6 GeV/fm
3

dET

dη η=0

= 503 ± 2 GeV

much larger than the critical energy density!!

Björken energy density estimate
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QGP probes and observables

• what have we learned 
about the nature of 
the phase transition?

• what have we learned 
about the properties 
of the QGP medium?

• at the SPS and at RHIC the initial conditions 
are already favorable for QGP formation!

• what are the QGP signatures?



Some Key Observables
• temperature

• direct photons, ...

• (energy) density

• transverse energy, parton  energy 
loss, heavy-quark energy loss, ...

• pressure gradient

• collective motion, collective motion 
of heavy-quarks, ...
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Some Key Observables
• chiral symmetry restoration

• strangeness enhancement

• deconfinement

• J/ψ suppression
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Strangeness enhancement

• QGP signature proposed by Rafelski and Muller, 
1982

• the masses of deconfined quarks are expected to 
be about 350 MeV lower compared to confined

• ms(constituent) ~ 500 MeV → ms(current) ~ 150 
MeV

• Tc ~ 170 MeV strange quark should be a sensitive 
probe



• copious strangeness production by gluon fusion: 

• in a system which is baryon rich (i.e. an access of quarks 
over anti-quarks), the enhancement can be further 
enhanced due to Pauli blocking of light quark production

53

Strangeness production in a QGP

s

sg

g
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Strangeness abundances in a QGP

• the QGP strangeness 
abundance is enhanced

• the strange quarks 
recombine into hadrons 
(when the QGP cools down 
and hadronizes)

• the abundance of strange 
hadrons should also be 
enhanced

• this enhancement should be 
larger for particles of higher 
strangeness content

E(Ω−) > E(Ξ−) > E(Λ)

(sss) (ssd) (sud)

s

sg

g
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Strangeness abundances in a hadron gas

• in a relatively long lived 
strongly interacting hadronic 
system strangeness can also be 
enhanced

• these hadronic processes are 
relatively fast and easy for 
kaons and Λ, but progressively 
harder for particles of higher 
strangeness

• the production of multi-strange 
baryons is expected to be 
sensitive to deconfinement

E(Ω−) < E(Ξ−) < E(Λ)

(sss) (ssd) (sud)

only 2→2 processes 
considered!!

π + π → K + K
π + N → Λ + K
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Strangeness measurement at the SPS

• enhancement: yield per 
participant relative to yield 
per participant in p-Be

• Ω more than a factor 20 
enhanced

• relative order follows QGP 
prediction
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Canonical suppression of strangeness

• successful description 
of strangeness 
production in heavy ion 
collisions with a  
thermal model using a 
grand canonical 
ensemble

• for small systems exact 
strangeness 
conservation becomes 
important, canonical 
ensemble, reduces 
available phase space

S. Hamieh, K. Redlich A. Tounsi, PL B486 (2000) 61
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Thermal Model
• assume chemically equilibrated system at freeze-out (constant Tch 

and µ)

• composed of non-interacting hadrons and resonances

• given Tch and µ 's, particle abundances (ni's) can be calculated in a 
grand canonical ensemble

• obey conservation laws: Baryon Number, Strangeness, Isospin

• short-lived particles and resonances need to be taken into account

  
ni =

g
2π 2

p2dp
e( Ei ( p)−µi ) /T ±1

,
0

∞

∫ Ei = p2 + mi
2
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Integrated identified particle yields

• thermal model fits rather well

• works rather well in e+ e- and proton-proton collisions as well, except for  
strange particles
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The phase diagram revisited

neutron stars
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Charmonium suppression (I)

• QGP signature predicted by Matsui and Satz, 1986

• in the plasma phase the interaction potential is 
expected to be screened beyond the Debye length 
λD (analogous to e.m. Debye screening)

• charmonium (ccbar) and bottonium (bbbar) states 
with r > λD will not bind; their production will be 
suppressed
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Charmonium suppression (II)

• λD depends on temperature, thus which states are 
suppressed depends on temperature

• charmonium suppression key signature of 
deconfinement!!!

• ccbar and bbbar bound states are particularly sensitive 
probes because the probability of combining an 
uncorrelated pair at the hadronization stage is small

• in fact, at the SPS the only chance of producing a ccbar 
bound state is shortly after the pair is produced. Debye 
screening destroys this correlations
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Quarkonium: thermometer dense QCD

Quarkonium Physics

Satz, HP2006

Tmelt(Ψ’)  <  Tmelt(ϒ(3S))  <  Tmelt(J/Ψ)  ≈  Tmelt(ϒ(2S))  <  TRHIC  <  Tmelt(ϒ(1S))?

TRHIC  >  Tmelt(χc) , Tmelt(Ψ’)  ,  Tmelt(ϒ(3S))

TLHC   >   Tmelt(J/Ψ)  , Tmelt(χb) ,  Tmelt(ϒ(2S)) 
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Sources of J/Ψ suppression

J/ψ

hadron

Hadron approaches the J/ψ.

J/ψ

Hadron’s 
color field 
disrupts 
the J/ψ.

J/ψ remnants move 
apart

Matsui &
Satz (1986)

Debye screening of the J/ψ Co-movers suppressing the J/ψ

1 2

3

1

2 3
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Hadronic J/Ψ dissociation
• before 

• before the J/ψ formation

• color-octet precursor interacts strongly, 
even with cold nuclear matter

• gives rise to the observed A-dependence: σ 
~ A0.92 

• during

• while the J/ψ is in the nuclear medium

• this is the Debye screening signature of 
Matusi and Satz

• after

• as the hadrons escape the collision zone

• co-movers can disrupt or destroy J/ψ’s 
after they have exited the nuclear medium
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The J/Ψ measurement at the SPS

• measured/expected J/Ψ 
suppression versus 
estimated energy density

• anomalous suppression sets 
in at ε~ 2.3 GeV/fm3

• double step was initially  
interpreted as successive 
melting of the χC and of the 
J/Ψ

NA50
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The J/Ψ measurement at RHIC

• suppression 
pattern almost 
the same as at 
the SPS???

• J/Ψ production at 
RHIC is more 
complicated due 
to possible 
contributions 
from coalescence 

• matching energy 
dependence is a 
challenge to 
theory!
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From SPS, RHIC to the LHC

•SPS

• observed many of the 
signatures predicted 
for QGP formation

• CERN announced a 
new state of matter



RHIC Scientists Serve Up “Perfect” Liquid
New state of matter more remarkable than predicted -- 
raising many new questions
April 18, 2005
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Thanks
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