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Outline
Lecture #1:  An introduction to Bayesian statistical methods

Role of probability in data analysis (Frequentist, Bayesian)
A simple fitting problem : Frequentist vs. Bayesian solution
Bayesian computation, Markov Chain Monte Carlo

Lecture #2:  Setting limits, making a discovery
Frequentist vs Bayesian approach,       
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Frequentist vs Bayesian approach,       
treatment of systematic uncertainties

Lecture #3:  Multivariate methods for HEP
Event selection as a statistical test
Neyman-Pearson lemma and likelihood ratio test
Some multivariate classifiers:

NN, BDT, SVM, ...



Setting limits:  Poisson data with background
Count n events, e.g., in fixed time or integrated luminosity.

s = expected number of signal events

b = expected number of background events

n ~ Poisson(s+b):
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Suppose the number of events found is roughly equal to the
expected number of background events, e.g., b = 4.6 and we 
observe nobs = 5 events.

The evidence for the presence of signal events is not
statistically significant,

→ set upper limit on the parameter s, taking
into consideration any uncertainty in b.



Setting limits
Frequentist intervals (limits) for a parameter s can be found by 
defining a test of the hypothesized value s (do this for all s): 

Specify values of the data n that are ‘disfavoured’ by s
(critical region) such that P(n in critical region) ≤ γ
for a prespecified γ, e.g., 0.05 or 0.1.

If n is observed in the critical region, reject the value s.
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If n is observed in the critical region, reject the value s.

Now invert the test to define a confidence interval as:

set of s values that would not be rejected in a test of
size γ (confidence level is 1 − γ ).

The interval will cover the true value of s with probability ≥ 1 − γ.
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Frequentist upper limit for Poisson parameter
First suppose that the expected background b is known.

Find the hypothetical value of s such that there is a given small
probability, say, γ = 0.05, to find as few events as we did or less:
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Solve numerically for s = sup, this gives an upper limit on s at a
confidence level of 1−γ.

Example:  suppose b = 0 and we find nobs = 0.  For 1−γ = 0.95,

→

[0, sup] is an example of a confidence interval. It is designed to
include the true value of s with probability at least 1−γ for any s.



Calculating Poisson parameter limits

Analogous procedure for lower limit slo.

To solve for slo, sup, can exploit relation to χ2 distribution:

Quantile of χ2 distribution
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For low fluctuation of n this 
can give negative result for sup; 
i.e. confidence interval is empty.



Limits near a physical boundary
Suppose e.g. b = 2.5 and we observe n = 0.  

If we choose CL = 0.9, we find from the formula for sup

Physicist:  
We already knew s ≥ 0 before we started; can’t use negative 
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We already knew s ≥ 0 before we started; can’t use negative 
upper limit to report result of expensive experiment!

Statistician:
The interval is designed to cover the true value only 90%
of the time — this was clearly not one of those times.

Not uncommon dilemma when limit of parameter is close to a 
physical boundary, cf. mν estimated using E2 − p2 . 



Expected limit for on s if s = 0

Physicist:  I should have used CL = 0.95 — then sup = 0.496

Even better:  for CL = 0.917923 we get sup = 10−4 !

Reality check:  with b = 2.5, typical Poisson fluctuation in n is
at least √2.5 = 1.6.  How can the limit be so low?
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Look at the mean limit for the 
no-signal hypothesis (s = 0)
(sensitivity).

Distribution of 95% CL limits
with b = 2.5, s = 0.
Mean upper limit = 4.44



Likelihood ratio limits (Feldman-Cousins)
Define likelihood ratio for hypothesized parameter value s:

Here       is the ML estimator, note 

Define a statistical test for a hypothetical value of s:      
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Define a statistical test for a hypothetical value of s:      

Rejection region defined by low values of likelihood ratio.

Reject s if p-value = P(l(s) ≤ lobs | s) is less than γ (e.g. γ = 0.05).

Confidence interval at CL = 1−γ is the set of s values not rejected.

Resulting intervals can be one- or two-sided (depending on n).

(Re)discovered for HEP by Feldman and Cousins, 
Phys. Rev. D 57 (1998) 3873.



More on intervals from LR test (Feldman-Cousins)
Caveat with coverage: suppose we find  n >> b.
Usually one then quotes a measurement:

If, however, n isn’t large enough to claim discovery, one
sets a limit on s.

FC pointed out that if this decision is made based on n, then
the actual coverage probability of the interval can be less than
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the actual coverage probability of the interval can be less than
the stated confidence level (‘flip-flopping’).

FC intervals remove this, providing a smooth transition from
1- to 2-sided intervals, depending on  n.

But, suppose FC gives e.g. 0.1 < s < 5 at 90% CL, 
p-value of s=0 still substantial.  Part of upper-limit ‘wasted’?



Nuisance parameters and  limits
In general we don’t know the background b perfectly.

Suppose we have a measurement 
of b,   e.g.,  bmeas ~ N (b, σb)

So the data are really: n events 
and the value bmeas. 

11

In principle the confidence interval 
recipe can be generalized to two 
measurements and two parameters. 

Difficult and rarely attempted, but 
see e.g. talks by K. Cranmer at 
PHYSTAT03 and  by G. Punzi at 
PHYSTAT05. G. Punzi, PHYSTAT05
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Nuisance parameters and profile likelihood 
Suppose model has likelihood function

Parameters of interest Nuisance parameters

Define the profile likelihood ratio as
Maximizes L for 
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Maximizes L for 
given value of µ

Maximizes L

λ(µ) reflects level of agreement between data and µ  (0 ≤ λ(µ) ≤ 1)

Equivalently use qµ = −2 ln λ(µ)



p-value from profile likelihood ratio 
Large qµ means worse agreement between data and µ

p-value = Prob(data with ≤ compatibility with µ when 
compared to the data we got | µ)
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rapidly approaches chi-square pdf 
(Wilks’ theorem)

chi-square cumulative
distribution, degrees of
freedom = dimension of µ

Reject µ if pµ < γ = 1 – CL

(Approx.) confidence interval for µ = set of µ values not rejected.

Coverage not exact for all ν but very good if 



The Bayesian approach to limits
In Bayesian statistics need to start with ‘prior pdf’ π(θ), this 
reflects degree of belief about θ before doing the experiment.

Bayes’ theorem tells how our beliefs should be updated in
light of the data x:
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Integrate posterior pdf p(θ | x) to give interval with any desired
probability content.  

For e.g. Poisson parameter 95% CL upper limit from



Bayesian prior for Poisson parameter
Include knowledge that s ≥0 by setting prior π(s) = 0 for s<0.

Often try to reflect ‘prior ignorance’ with e.g. 

Not normalized but this is OK as long as L(s) dies off for large s.
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Not invariant under change of parameter — if we had used instead
a flat prior for, say, the mass of the Higgs boson, this would 
imply a non-flat prior for the expected number of Higgs events.

Doesn’t really reflect a reasonable degree of belief, but often used
as a point of reference;

or viewed as a recipe for producing an interval whose frequentist
properties can be studied (coverage will depend on true s). 



Bayesian interval with flat prior for s

Solve numerically to find limit sup.

For special case b = 0, Bayesian upper limit with flat prior
numerically same as classical case (‘coincidence’). 

Otherwise Bayesian limit is
everywhere greater than
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everywhere greater than
classical (‘conservative’).

Never goes negative.

Doesn’t depend on b if n = 0.



Bayesian limits with uncertainty on b
Uncertainty on b goes into the prior, e.g.,

Put this into Bayes’ theorem,
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Put this into Bayes’ theorem,

Marginalize over b, then use p(s|n) to find intervals for s
with any desired probability content.

Controversial part here is prior for signal πs(s) 
(treatment of nuisance parameters is easy).



Frequentist discovery, p-values
To discover e.g. the Higgs, try to reject the background-only 
(null) hypothesis (H0).

Define a statistic t whose value reflects compatibility of data
with H0.

p-value = Prob(data with ≤ compatibility with H0 when 
compared to the data we got | H0 )
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compared to the data we got | H0 )

For example, if high values of t mean less compatibility,

If p-value comes out small, then this is evidence against the 
background-only hypothesis → discovery made!



Significance from p-value
Define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.
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TMath::Prob

TMath::NormQuantile



When to publish
HEP folklore is to claim discovery when p = 2.9 × 10−7,
corresponding to a significance Z = 5.

This is very subjective and really should depend on the 
prior probability of the phenomenon in question, e.g.,

phenomenon        reasonable p-value for discovery
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phenomenon        reasonable p-value for discovery
D0D0 mixing ~0.05
Higgs ~ 10−7 (?)
Life on Mars ~10−10

Astrology ∼10−20



Bayesian model selection (‘discovery’)

no Higgs

The probability of hypothesis H0 relative to its complementary
alternative H1 is often given by the posterior odds:
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Higgs
Bayes factor B01 prior odds

The Bayes factor is regarded as measuring the weight of 
evidence of the data in support of H0 over H1.

Interchangeably use B10 = 1/B01



Assessing Bayes factors
One can use the Bayes factor much like a p-value (or Z value).

There is an “established” scale, analogous to our 5σ rule:

B10 Evidence against H0
--------------------------------------------
1 to 3 Not worth more than a bare mention
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1 to 3 Not worth more than a bare mention
3 to 20 Positive
20 to 150 Strong
> 150 Very strong

Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773.

Will this be adopted in HEP?



Rewriting the Bayes factor
Suppose we have models Hi, i = 0, 1, ...,

each with a likelihood

and a prior pdf for its internal parameters 

so that the full prior is
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so that the full prior is

where                         is the overall prior probability for Hi. 

The Bayes factor comparing Hi and Hj can be written 



Bayes factors independent of P(Hi)

For Bij we need the posterior probabilities marginalized over
all of the internal parameters of the models:

Use Bayes
theorem
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So therefore the Bayes factor is

The prior probabilities pi = P(Hi) cancel.

Ratio of  marginal 
likelihoods



Numerical determination of Bayes factors

Both numerator and denominator of Bij are of the form

‘marginal likelihood’

Various ways to compute these, e.g., using sampling of the 
posterior pdf (which we can do with MCMC).
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posterior pdf (which we can do with MCMC).
Harmonic Mean (and improvements)
Importance sampling
Parallel tempering (~thermodynamic integration)
Nested sampling
...

See e.g. 



Example of systematics in a search
Combination of Higgs boson search channels (ATLAS)

Expected Performance of the ATLAS Experiment:  Detector, 
Trigger and Physics, arXiv:0901.0512, CERN-OPEN-2008-20.

Standard Model Higgs channels considered (more to be used later):
H → γγ
H → WW (*)→ eνµν
H → ZZ(*) → 4l (l = e, µ)

G. Cowan SUSSP65, St Andrews, 16-29 August 2009 / Statistical Methods 2 page 26

H → ZZ(*) → 4l (l = e, µ)
H → τ+τ−→ ll, lh

Used profile likelihood method for systematic uncertainties:
background rates, signal & background shapes.



Statistical model for Higgs search
Bin i of a given channel has ni events, expectation value is

µ is global strength parameter, common to all channels.
µ = 0 means background only, µ = 1 is SM hypothesis.
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Expected signal and background are:

µ = 0 means background only, µ = 1 is SM hypothesis.

btot, θθθθs, θθθθb are
nuisance parameters



The likelihood function
The single-channel likelihood function uses Poisson model
for events in signal and control histograms:

data in signal histogram
data in control 
histogram
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θθθθ represents all nuisance parameters, 
e.g., background rate, shapes 

here signal rate is 
only parameter
of interest

The full likelihood function is 

There is a likelihood Li(µ,θθθθi) for each channel, i = 1, …, N.  



Profile likelihood ratio
To test hypothesized value of µ, construct profile likelihood ratio:

Maximized L for given µ

Maximized L

Equivalently use qµ = − 2 ln λ(µ):
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Equivalently use qµ = − 2 ln λ(µ):

data agree well with hypothesized µ→ qµ small

data disagree with hypothesized µ→ qµ large

Distribution of qµ under assumption of µ related to chi-square
(Wilks' theorem, here approximation valid for roughly L > 2 fb-1):



p-value / significance of hypothesized µ

Test hypothesized µ by giving
p-value, probability to see data 
with ≤ compatibility with µ
compared to data observed:
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Equivalently use significance,
Z, defined as equivalent number
of sigmas for a Gaussian 
fluctuation in one direction: 



Sensitivity
Discovery:

Generate data under s+b (µ = 1) hypothesis;
Test hypothesis µ = 0 → p-value → Z.

Exclusion:
Generate data under background-only (µ = 0) hypothesis;
Test hypothesis µ = 1.
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Test hypothesis µ = 1.
If µ = 1 has p-value < 0.05 exclude mH at 95% CL.

Presence of nuisance parameters leads to broadening of the
profile likelihood, reflecting the loss of information, and gives
appropriately reduced discovery significance, weaker limits.



Combined discovery significance

Discovery signficance 
(in colour) vs. L, mH:
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Approximations used here not 
always accurate for L < 2 fb−1

but in most cases conservative.



Combined 95% CL exclusion limits

1 − p-value of mH
(in colour) vs. L, mH:
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Summary on limits
Different sorts of limits answer different questions.  

A frequentist confidence interval does not (necessarily)
answer, “What do we believe the parameter’s value is?”

Look at sensitivity, e.g., E[sup | s = 0]; consider also:

need for consensus/conventions;
convenience and ability to combine results, ...
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convenience and ability to combine results, ...

For any result, consumer will compute (mentally or otherwise):

Need likelihood (or summary thereof). consumer’s prior



Summary on discovery

Current convention:  p-value of background-only < 2.9 × 10−7 (5σ )

This should really depend also on other factors:
Plausibility of signal
Confidence in modeling of background

Can also use Bayes factor
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Can also use Bayes factor

Should hopefully point to same conclusion as p-value.

If not, need to understand why!

As yet not widely used in HEP, numerical issues not easy.



Extra slides 
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Upper limit versus b
Feldman & Cousins, PRD 57 (1998) 3873
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b

If n = 0 observed, should upper limit depend on b?
Classical:  yes
Bayesian:  no
FC:  yes



Coverage probability of confidence intervals
Because of discreteness of Poisson data, probability for interval
to include true value in general > confidence level (‘over-coverage’)
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Cousins-Highland method 
Regard b as ‘random’, characterized by pdf π(b).

Makes sense in Bayesian approach, but in frequentist 
model b is constant (although unknown).

A measurement bmeas is random but this is not the mean
number of background events, rather, b is.

Compute anyway

39

Compute anyway

This would be the probability for n if Nature were to generate
a new value of b upon repetition of the experiment with πb(b).

Now e.g. use this P(n;s) in the classical recipe for upper limit
at CL = 1 − β:

Result has hybrid Bayesian/frequentist character.
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‘Integrated likelihoods’ 

Consider again signal s and background b, suppose we have
uncertainty in b characterized by a prior pdf πb(b).

Define integrated likelihood as
also called modified profile likelihood, in any case not
a real likelihood.

40Glen Cowan

Now use this to construct likelihood ratio test and invert
to obtain confidence intervals.

Feldman-Cousins  & Cousins-Highland (FHC2), see e.g.
J. Conrad et al., Phys. Rev. D67 (2003) 012002 and 
Conrad/Tegenfeldt PHYSTAT05 talk.

Calculators available (Conrad, Tegenfeldt, Barlow).

RHUL HEP seminar, 22 March, 2006



Analytic formulae for limits
There are a number of papers describing Bayesian limits
for a variety of standard scenarios

Several conventional priors
Systematics on efficiency, background
Combination of channels

and (semi-)analytic formulae and software are provided.
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But for more general cases we need to use numerical methods 
(e.g. L.D. uses importance sampling).



Harmonic mean estimator

E.g., consider only one model and write Bayes theorem as:

π(θθθθ) is normalized to unity so integrate both sides,
posterior
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Therefore sample θθθθ from the posterior via MCMC and estimate m
with one over the average of 1/L (the harmonic mean of L).

expectation



Improvements to harmonic mean estimator

The harmonic mean estimator is numerically very unstable;
formally infinite variance (!).  Gelfand & Dey propose variant:

Rearrange Bayes thm; multiply 
both sides by arbitrary pdf f(θθθθ):
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Integrate over θθθθ :

Improved convergence if tails of f(θθθθ) fall off faster than L(x|θθθθ)π(θθθθ)

Note harmonic mean estimator is special case f(θθθθ) = π(θθθθ).
.



Importance sampling
Need pdf f(θθθθ) which we can evaluate at arbitrary θθθθ and also
sample with MC.

The marginal likelihood can be written
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Best convergence when f(θθθθ) approximates shape of L(x|θθθθ)π(θθθθ).

Use for f(θθθθ) e.g. multivariate Gaussian with mean and covariance
estimated from posterior (e.g. with MINUIT).


