

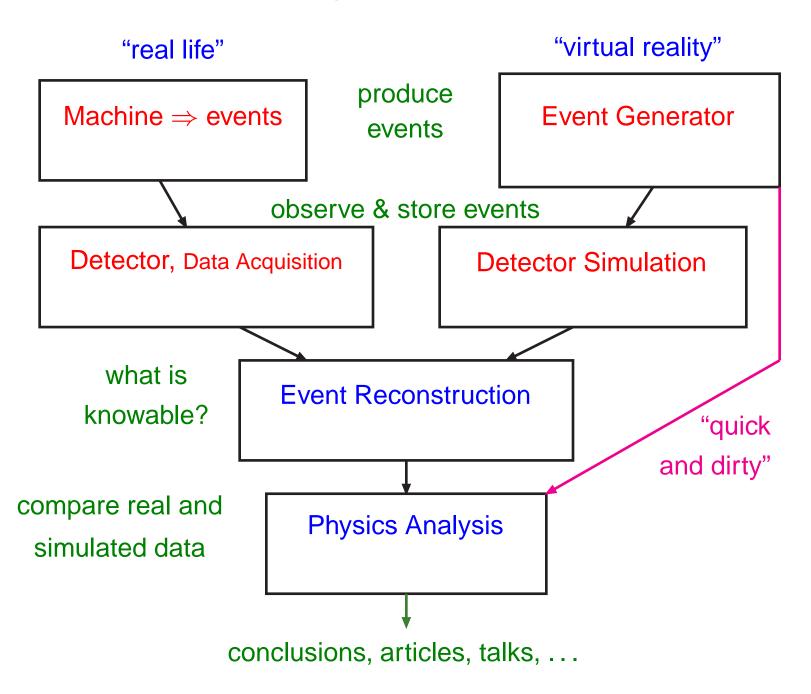
65th Scottish Universities Summer School in Physics: LHC Physics St Andrews, Scotland 16 - 29 August 2009

Monte Carlo Tools

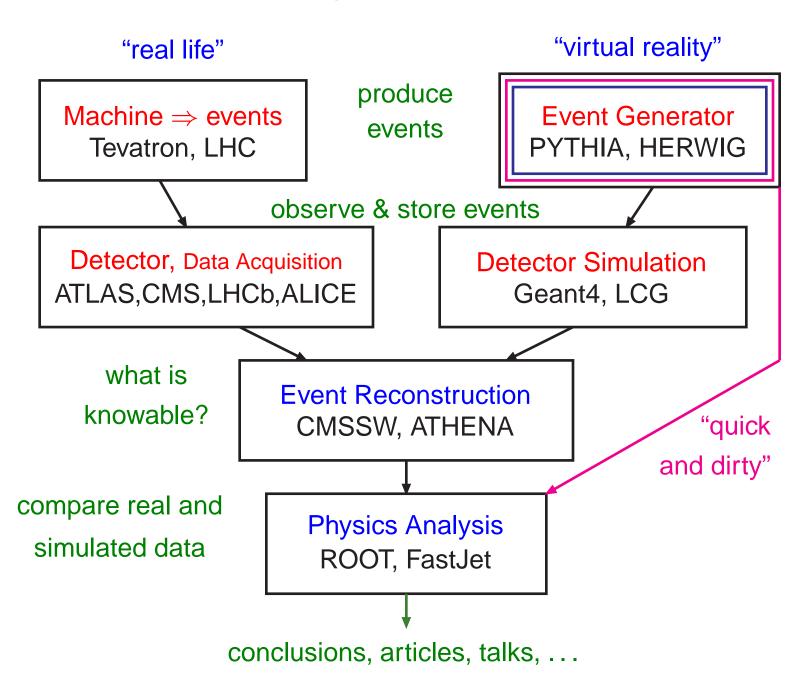
Torbjörn Sjöstrand
Lund University

- 1. (today) Introduction and Overview; Parton Showers
- 2. (tomorrow) Matching Issues; Multiple Parton Interactions
- 3. (Wednesday) Hadronization; LHC predictions; Generator News

Event Generator Position



Event Generator Position



Why Generators?

- Allow studies of complex multiparticle physics
- Large flexibility in physical quantities that can be addressed
 - Vehicle of ideology to disseminate ideas

Can be used to

- predict event rates and topologies

 estimate feasibility
- simulate possible backgrounds ⇒ devise analysis strategies
- study detector requirements

 optimize detector/trigger design
- study detector imperfections ⇒ evaluate acceptance corrections

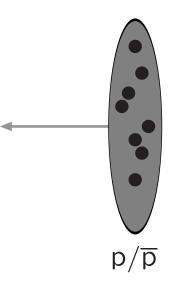
Monte Carlo method convenient because Einstein was wrong:

God does throw dice!

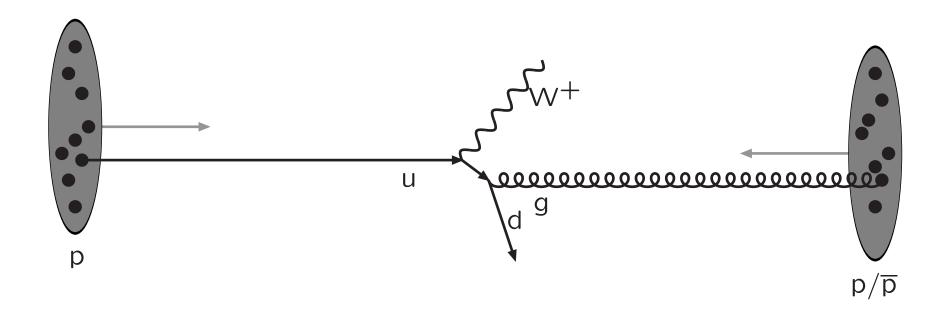
Quantum mechanics: amplitudes \Longrightarrow probabilities Anything that possibly can happen, will! (but more or less often)

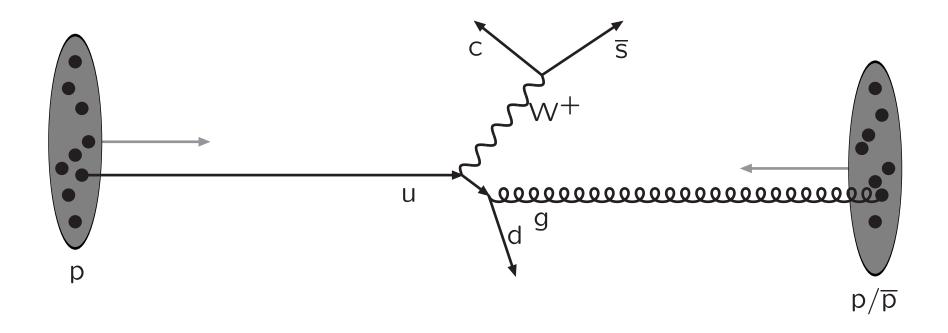
The structure of an event

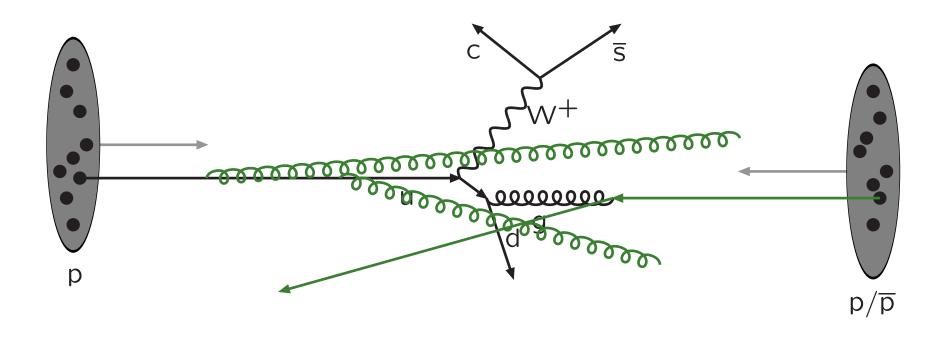
Warning: schematic only, everything simplified, nothing to scale, ...

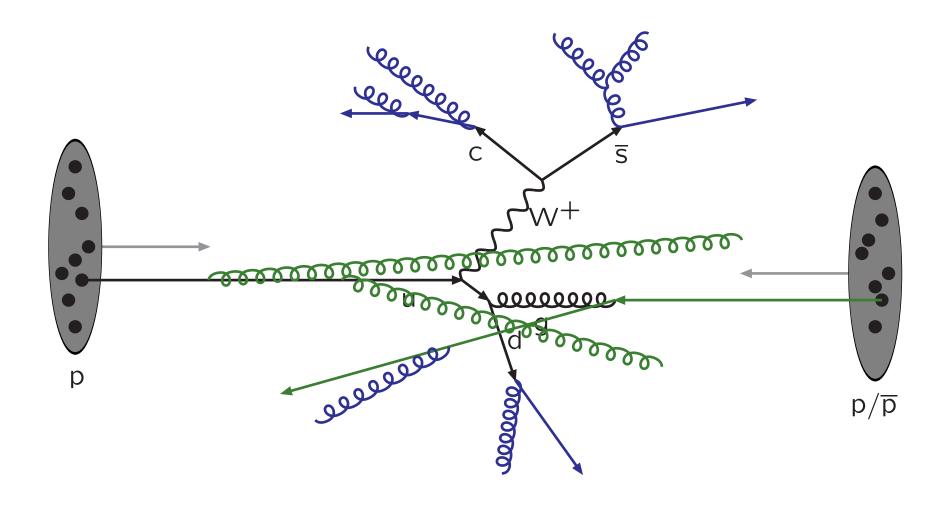


Incoming beams: parton densities

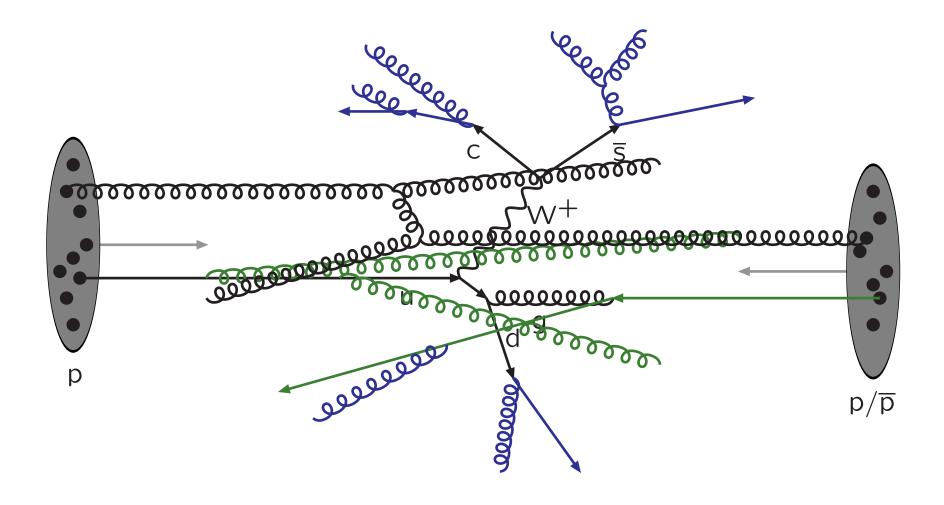


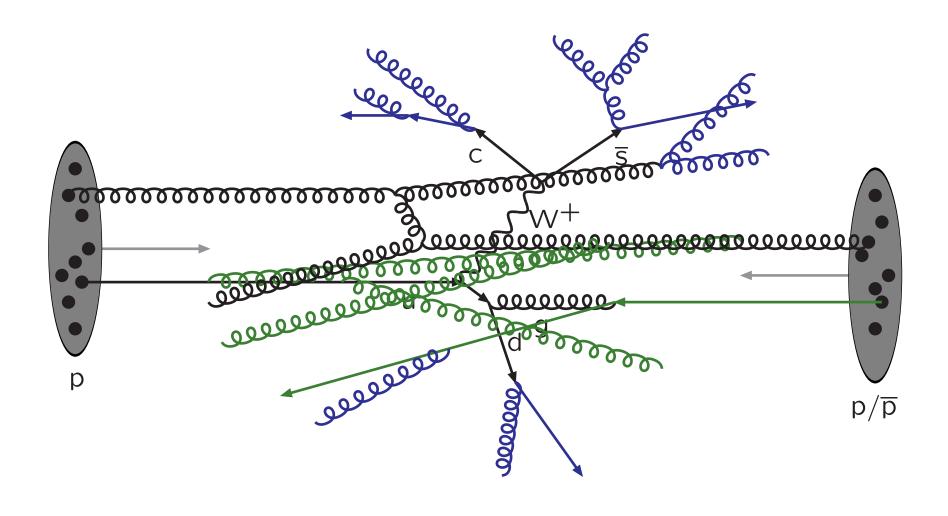


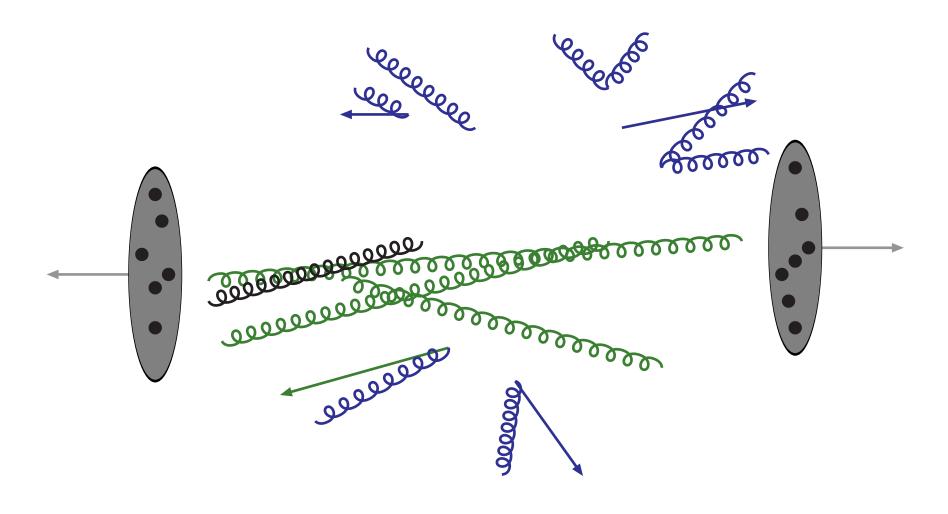




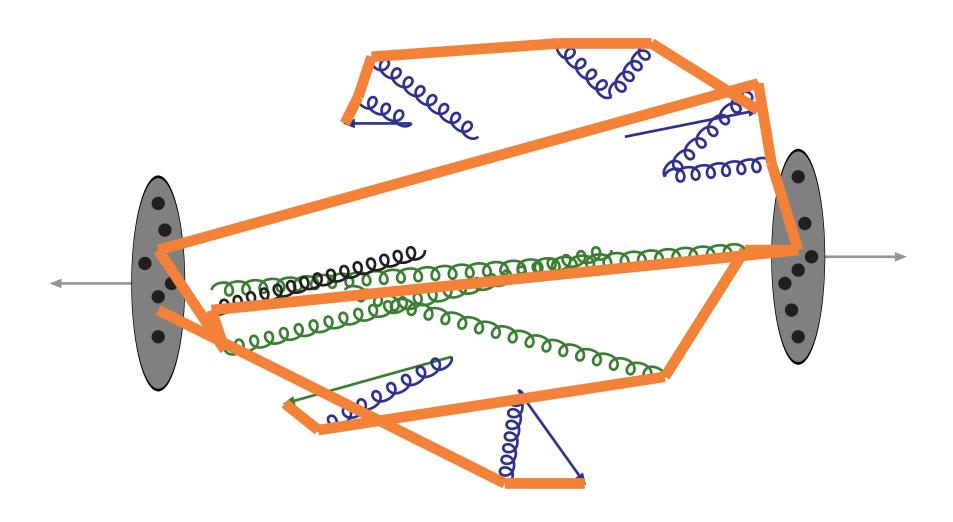
Final-state radiation: timelike parton showers



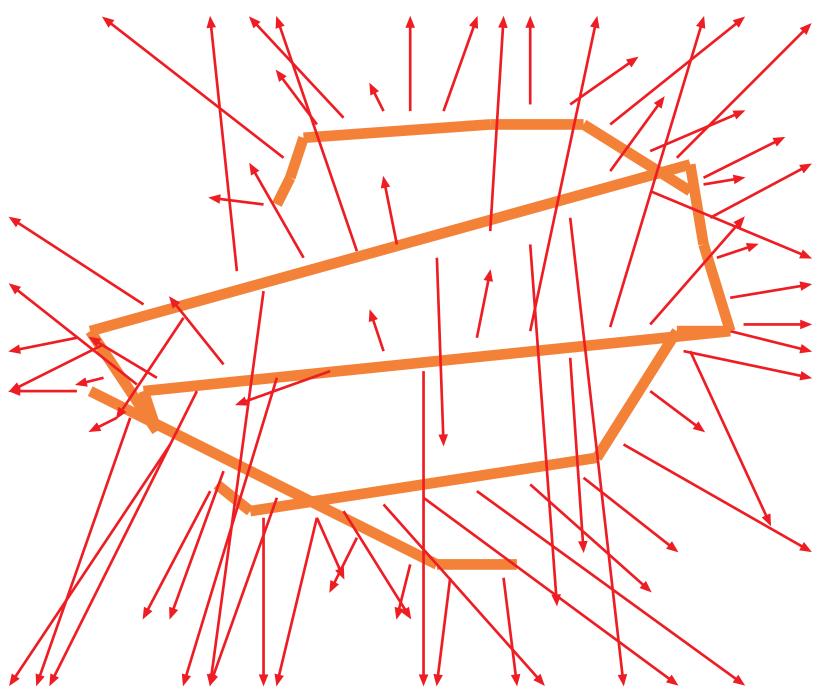




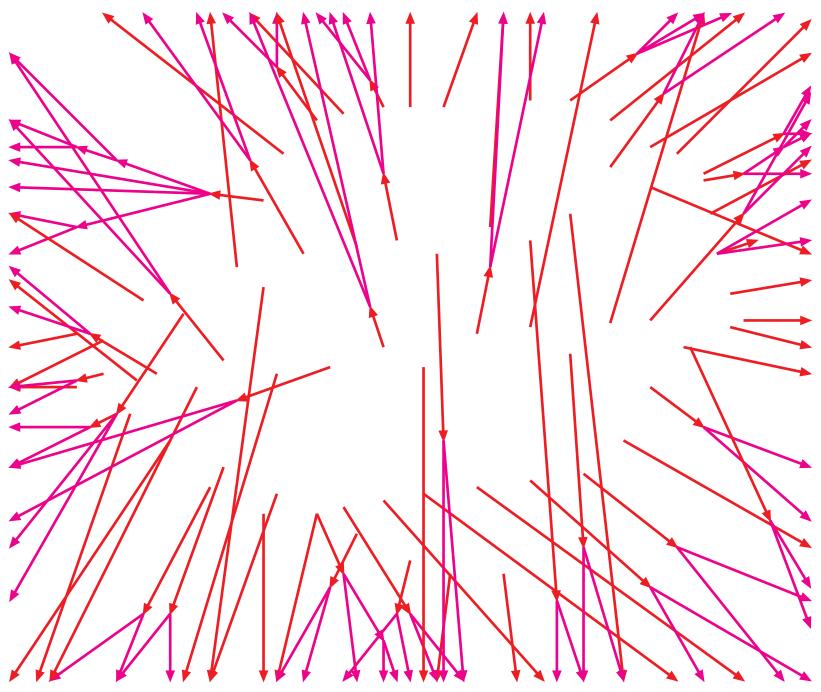
Beam remnants and other outgoing partons



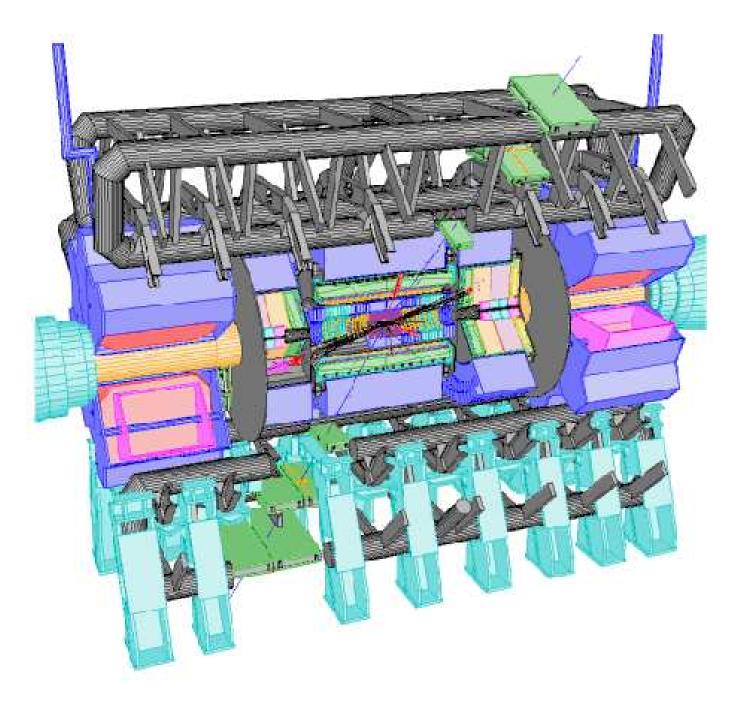
Everything is connected by colour confinement strings Recall! Not to scale: strings are of hadronic widths



The strings fragment to produce primary hadrons



Many hadrons are unstable and decay further



These are the particles that hit the detector

The Monte Carlo method

```
Want to generate events in as much detail as Mother Nature
                     ⇒ get average and fluctutations right
                   \implies make random choices, \sim as in nature
          \sigma_{\text{final state}} = \sigma_{\text{hard process}} \mathcal{P}_{\text{tot,hard process} \to \text{final state}}
(appropriately summed & integrated over non-distinguished final states)
where \mathcal{P}_{tot} = \mathcal{P}_{res} \mathcal{P}_{ISR} \mathcal{P}_{FSR} \mathcal{P}_{MI} \mathcal{P}_{remnants} \mathcal{P}_{hadronization} \mathcal{P}_{decays}
               with \mathcal{P}_i = \prod_i \mathcal{P}_{ij} = \prod_i \prod_k \mathcal{P}_{ijk} = \dots in its turn
                              ⇒ divide and conquer
       an event with n particles involves \mathcal{O}(10n) random choices,
     (flavour, mass, momentum, spin, production vertex, lifetime, ...)
   LHC: \sim 100 charged and \sim 200 neutral (+ intermediate stages)
                           ⇒ several thousand choices
                             (of \mathcal{O}(100) different kinds)
```

Generator Landscape

	General-Purpose	Specialized
Hard Processes		a lot
Resonance Decays	HERWIG	HDECAY,
Parton Showers	PYTHIA	Ariadne/LDC, VINCIA,
Underlying Event	SHERPA	DPMJET/PHOJET
Hadronization		none (?)
Ordinary Decays		TAUOLA, EvtGen

specialized often best at given task, but need General-Purpose core

Matrix-Elements Programs

Wide spectrum from "general-purpose" to "one-issue", see e.g.

```
http://www.cedar.ac.uk/hepcode/
```

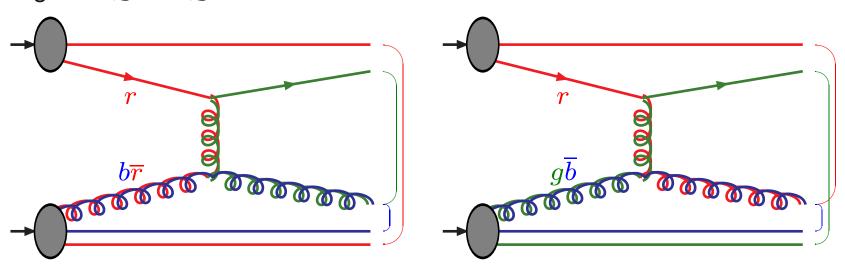
Free for all as long as Les-Houches-compliant output.

- I) General-purpose, leading-order:
- MadGraph/MadEvent (amplitude-based,
 7 outgoing partons):

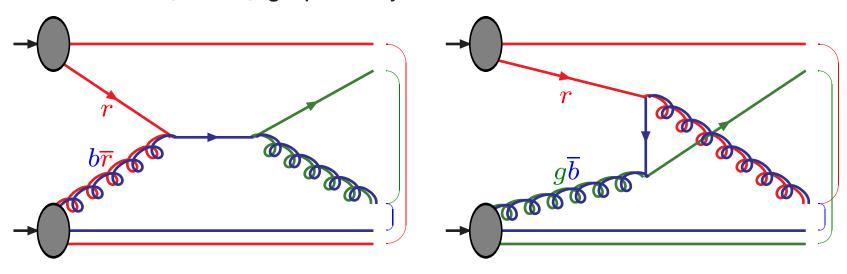
 http://madgraph.physics.uiuc.edu/
- CompHEP/CalcHEP (matrix-elements-based, ~≤ 4 outgoing partons)
- Comix: part of SHERPA (Behrends-Giele recursion)
- HELAC-PHEGAS (Dyson-Schwinger)
- II) Special processes, leading-order:
- ALPGEN: W/Z+ \leq 6j, nW + mZ + kH+ \leq 3j, ...
- AcerMC: ttbb, ...
- VECBOS: $W/Z+ \le 4j$
- III) Special processes, next-to-leading-order:
- MCFM: NLO W/Z+ \leq 2j, WZ, WH, H+ \leq 1j
- GRACE+Bases/Spring

Colour flow in hard processes

One Feynman graph can correspond to several possible colour flows, e.g. for $qg \rightarrow qg$:



while other $qg \rightarrow qg$ graphs only admit one colour flow:



so nontrivial mix of kinematics variables (\hat{s}, \hat{t}) and colour flow topologies I, II:

$$\begin{aligned} |\mathcal{A}(\hat{s},\hat{t})|^2 &= |\mathcal{A}_{I}(\hat{s},\hat{t}) + \mathcal{A}_{II}(\hat{s},\hat{t})|^2 \\ &= |\mathcal{A}_{I}(\hat{s},\hat{t})|^2 + |\mathcal{A}_{II}(\hat{s},\hat{t})|^2 + 2 \,\mathcal{R}e \,(\mathcal{A}_{I}(\hat{s},\hat{t})\mathcal{A}_{II}^*(\hat{s},\hat{t})) \end{aligned}$$

with
$$\mathcal{R}e\left(\mathcal{A}_{\mathrm{I}}(\widehat{s},\widehat{t})\mathcal{A}_{\mathrm{II}}^{*}(\widehat{s},\widehat{t})\right)\neq0$$

- ⇒ indeterminate colour flow, while
- showers should know it (coherence),
- hadronization must know it (hadrons singlets).

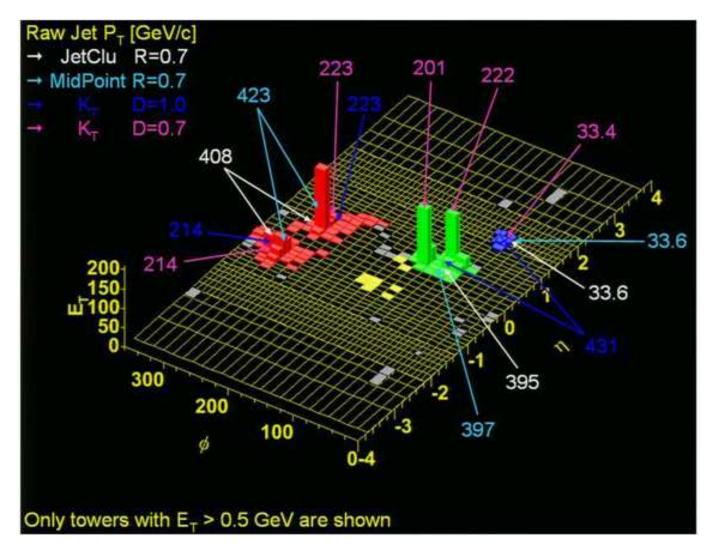
Normal solution:

$$\frac{\text{interference}}{\text{total}} \propto \frac{1}{N_{\text{C}}^2 - 1}$$

so split I : II according to proportions in the $N_{\text{C}} \to \infty$ limit, i.e.

$$\begin{aligned} |\mathcal{A}(\widehat{s},\widehat{t})|^2 &= |\mathcal{A}_{\mathrm{I}}(\widehat{s},\widehat{t})|_{\mathsf{mod}}^2 + |\mathcal{A}_{\mathrm{II}}(\widehat{s},\widehat{t})|_{\mathsf{mod}}^2 \\ |\mathcal{A}_{\mathrm{I}}(\widehat{s},\widehat{t})|_{\mathsf{mod}}^2 &= |\mathcal{A}_{\mathrm{I}}(\widehat{s},\widehat{t}) + \mathcal{A}_{\mathrm{II}}(\widehat{s},\widehat{t})|^2 \left(\frac{|\mathcal{A}_{\mathrm{I}}(\widehat{s},\widehat{t})|^2}{|\mathcal{A}_{\mathrm{I}}(\widehat{s},\widehat{t})|^2 + |\mathcal{A}_{\mathrm{II}}(\widehat{s},\widehat{t})|^2} \right)_{N_{\mathsf{C}} \to \infty} \\ |\mathcal{A}_{\mathrm{II}}(\widehat{s},\widehat{t})|_{\mathsf{mod}}^2 &= \dots \end{aligned}$$

Parton Showers



- Final-State (Timelike) Showers
- Initial-State (Spacelike) Showers
 - Matching to Matrix Elements

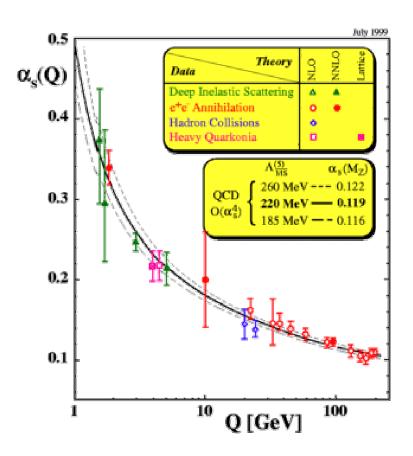
Divergences

Emission rate q → qg diverges when

- collinear: opening angle $\theta_{qg} \rightarrow 0$
- soft: gluon energy $E_{\rm g} \to 0$

Almost identical to $e \rightarrow e \gamma$ ("bremsstrahlung"), but QCD is non-Abelian so additionally

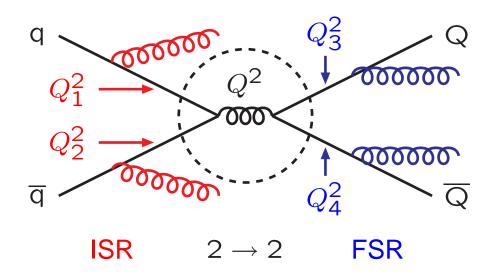
- g → gg similarly divergent
- $\alpha_{\rm S}(Q^2)$ diverges for $Q^2 \to 0$ (actually for $Q^2 \to \Lambda_{\rm QCD}^2$)



Big probability for one emission \Longrightarrow also big for several \Longrightarrow with ME's need to calculate to high order **and** with many loops \Longrightarrow extremely demanding technically (not solved!), and involving big cancellations between positive and negative contributions. Alternative approach: **parton showers**

The Parton-Shower Approach

$$2 \rightarrow n = (2 \rightarrow 2) \oplus ISR \oplus FSR$$



FSR = Final-State Rad.; timelike shower
$$Q_i^2 \sim m^2 > 0 \ {\rm decreasing} \label{eq:Qi}$$

ISR = Initial-State Rad.; spacelike shower
$$Q_i^2 \sim -m^2 > 0 \text{ increasing}$$

$$2 \rightarrow 2$$
 = hard scattering (on-shell):

$$\sigma = \iiint dx_1 dx_2 d\hat{t} f_i(x_1, Q^2) f_j(x_2, Q^2) \frac{d\hat{\sigma}_{ij}}{d\hat{t}}$$

Shower evolution is viewed as a probabilistic process, which occurs with unit total probability:

the cross section is not directly affected,
but indirectly it is, via the changed event shape

Technical aside: why timelike/spacelike?

Consider four-momentum conservation in a branching $a \rightarrow b c$

$$a \xrightarrow{b} p_{\perp a} = 0 \Rightarrow p_{\perp c} = -p_{\perp b}$$

$$p_{+} = E + p_{\perp} \Rightarrow p_{+a} = p_{+b} + p_{+c}$$

$$p_{-} = E - p_{\perp} \Rightarrow p_{-a} = p_{-b} + p_{-c}$$

Define
$$p_{+b} = z p_{+a}$$
, $p_{+c} = (1-z) p_{+a}$
Use $p_{+}p_{-} = E^{2} - p_{\perp}^{2} = m^{2} + p_{\perp}^{2}$

$$\frac{m_{a}^{2} + p_{\perp a}^{2}}{p_{+a}} = \frac{m_{b}^{2} + p_{\perp b}^{2}}{z p_{+a}} + \frac{m_{c}^{2} + p_{\perp c}^{2}}{(1-z) p_{+a}}$$

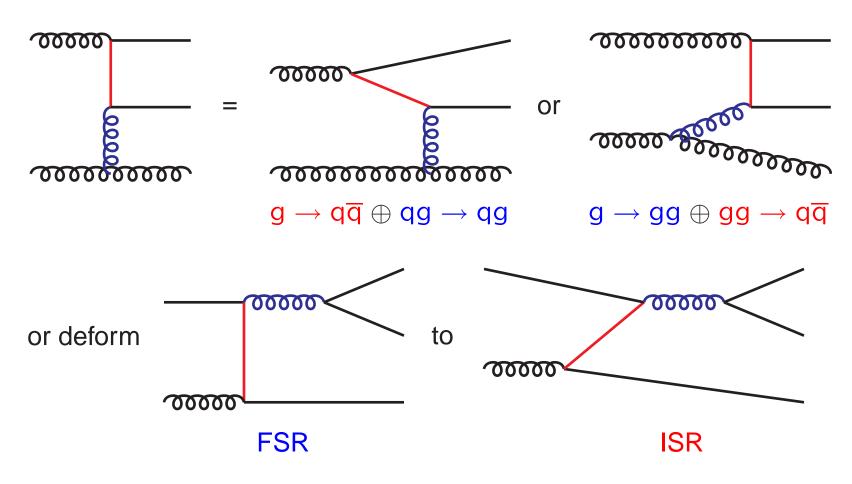
$$\Rightarrow m_{a}^{2} = \frac{m_{b}^{2} + p_{\perp}^{2}}{z} + \frac{m_{c}^{2} + p_{\perp}^{2}}{1-z} = \frac{m_{b}^{2}}{z} + \frac{m_{c}^{2}}{1-z} + \frac{p_{\perp}^{2}}{z(1-z)}$$

Final-state shower: $m_b=m_c=0 \Rightarrow m_a^2=\frac{p_\perp^2}{z(1-z)}>0 \Rightarrow$ timelike

Initial-state shower:
$$m_a=m_c=0 \Rightarrow m_b^2=-\frac{p_\perp^2}{1-z}<0 \Rightarrow$$
 spacelike

Doublecounting

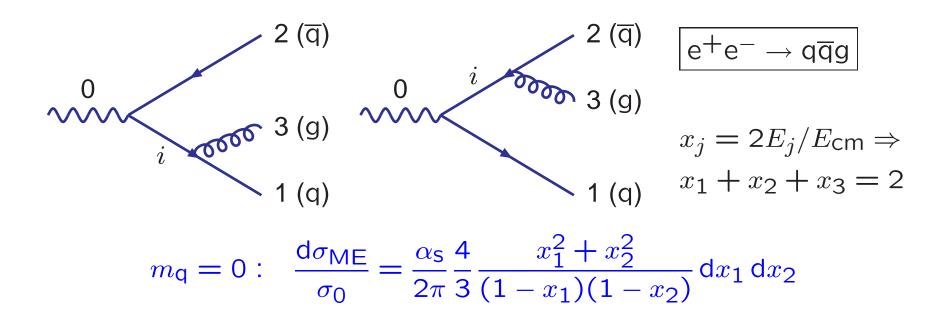
A 2 \rightarrow n graph can be "simplified" to 2 \rightarrow 2 in different ways:



Do not doublecount: $2 \rightarrow 2 = most \ virtual = shortest \ distance$

Conflict: theory derivations often assume virtualities strongly ordered; interesting physics often in regions where this is not true!

From Matrix Elements to Parton Showers



Rewrite for $x_2 \rightarrow 1$, i.e. q-g collinear limit:

$$1 - x_2 = \frac{m_{13}^2}{E_{\text{cm}}^2} = \frac{Q^2}{E_{\text{cm}}^2} \Rightarrow dx_2 = \frac{dQ^2}{E_{\text{cm}}^2}$$

$$x_1 \approx z \Rightarrow dx_1 \approx dz$$

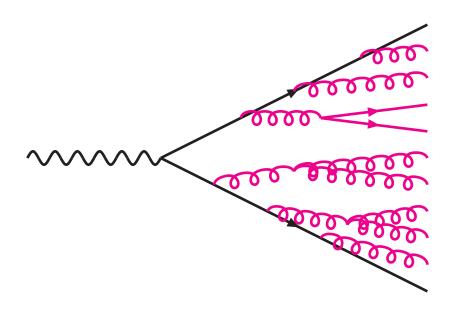
$$x_3 \approx 1 - z$$

$$\Rightarrow d\mathcal{P} = \frac{d\sigma}{\sigma_0} = \frac{\alpha_s}{2\pi} \frac{dx_2}{(1 - x_2)} \frac{4}{3} \frac{x_2^2 + x_1^2}{(1 - x_1)} dx_1 \approx \frac{\alpha_s}{2\pi} \frac{dQ^2}{Q^2} \frac{4}{3} \frac{1 + z^2}{1 - z} dz$$

Generalizes to DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

$$\begin{split} \mathrm{d} \mathcal{P}_{a \to bc} &= \frac{\alpha_{\mathrm{S}}}{2\pi} \frac{\mathrm{d} Q^2}{Q^2} P_{a \to bc}(z) \, \mathrm{d} z \\ P_{\mathrm{q} \to \mathrm{qg}} &= \frac{4}{3} \frac{1 + z^2}{1 - z} \\ P_{\mathrm{g} \to \mathrm{gg}} &= 3 \frac{(1 - z(1 - z))^2}{z(1 - z)} \\ P_{\mathrm{g} \to \mathrm{q}\overline{\mathrm{q}}} &= \frac{n_f}{2} (z^2 + (1 - z)^2) \quad (n_f = \mathrm{no.~of~quark~flavours}) \end{split}$$

Iteration gives final-state parton showers



Need soft/collinear cut-offs to stay away from nonperturbative physics. Details model-dependent, e.g. $Q > m_0 = \min(m_{ij}) \approx 1 \text{ GeV},$ $z_{\min}(E,Q) < z < z_{\max}(E,Q)$ or $p_{\perp} > p_{\perp \min} \approx 0.5 \text{ GeV}$

The Sudakov Form Factor

Conservation of total probability:

 $\mathcal{P}(\text{nothing happens}) = 1 - \mathcal{P}(\text{something happens})$

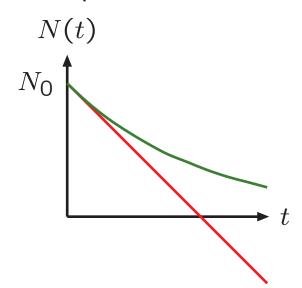
"multiplicativeness" in "time" evolution:

$$\mathcal{P}_{\text{nothing}}(0 < t \leq T) = \mathcal{P}_{\text{nothing}}(0 < t \leq T_1) \mathcal{P}_{\text{nothing}}(T_1 < t \leq T)$$

Subdivide further, with $T_i = (i/n)T$, $0 \le i \le n$:

$$\begin{split} \mathcal{P}_{\mathsf{nothing}}(0 < t \leq T) &= \lim_{n \to \infty} \prod_{i=0}^{n-1} \mathcal{P}_{\mathsf{nothing}}(T_i < t \leq T_{i+1}) \\ &= \lim_{n \to \infty} \prod_{i=0}^{n-1} \left(1 - \mathcal{P}_{\mathsf{something}}(T_i < t \leq T_{i+1})\right) \\ &= \exp\left(-\lim_{n \to \infty} \sum_{i=0}^{n-1} \mathcal{P}_{\mathsf{something}}(T_i < t \leq T_{i+1})\right) \\ &= \exp\left(-\int_0^T \frac{\mathrm{d}\mathcal{P}_{\mathsf{something}}(t)}{\mathrm{d}t} \mathrm{d}t\right) \\ \implies \mathrm{d}\mathcal{P}_{\mathsf{first}}(T) &= \mathrm{d}\mathcal{P}_{\mathsf{something}}(T) \exp\left(-\int_0^T \frac{\mathrm{d}\mathcal{P}_{\mathsf{something}}(t)}{\mathrm{d}t} \mathrm{d}t\right) \end{split}$$

Example: radioactive decay of nucleus



naively:
$$\frac{dN}{dt} = -cN_0 \Rightarrow N(t) = N_0 (1 - ct)$$

depletion: a given nucleus can only decay once

correctly:
$$\frac{dN}{dt} = -cN(t) \Rightarrow N(t) = N_0 \exp(-ct)$$

generalizes to:
$$N(t) = N_0 \exp \left(-\int_0^t c(t')dt'\right)$$

or:
$$\frac{dN(t)}{dt} = -c(t) N_0 \exp\left(-\int_0^t c(t')dt'\right)$$

sequence allowed: $nucleus_1 \rightarrow nucleus_2 \rightarrow nucleus_3 \rightarrow \dots$

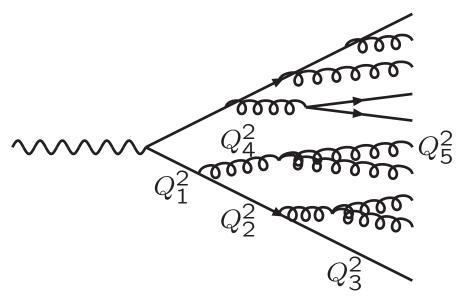
Correspondingly, with $Q \sim 1/t$ (Heisenberg)

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\alpha_\mathrm{S}}{2\pi} \frac{\mathrm{d}Q^2}{Q^2} \, P_{a\to bc}(z) \, \mathrm{d}z \, \exp\left(-\sum_{b,c} \int_{Q^2}^{Q^2_\mathrm{max}} \frac{\mathrm{d}Q'^2}{Q'^2} \int \frac{\alpha_\mathrm{S}}{2\pi} \, P_{a\to bc}(z') \, \mathrm{d}z'\right)$$

where the exponent is (one definition of) the Sudakov form factor

A given parton can only branch once, i.e. if it did not already do so

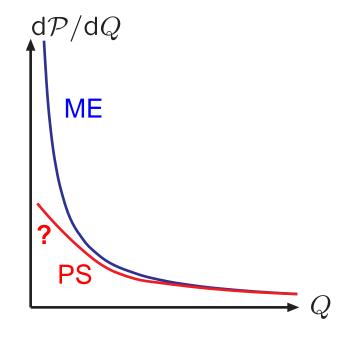
Note that $\sum_{b,c} \int \int d\mathcal{P}_{a\to bc} \equiv 1 \Rightarrow convenient for Monte Carlo$ ($\equiv 1$ if extended over whole phase space, else possibly nothing happens)



Sudakov form factor provides "time" ordering of shower: lower $Q^2 \iff$ longer times

$$\begin{aligned} Q_1^2 &> Q_2^2 > Q_3^2 \\ Q_1^2 &> Q_4^2 > Q_5^2 \\ \text{etc.} \end{aligned}$$

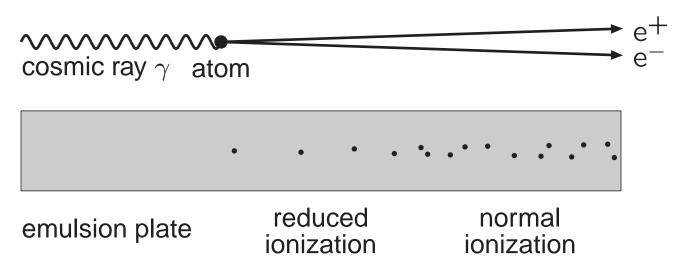
Sudakov regulates singularity for *first* emission . . .



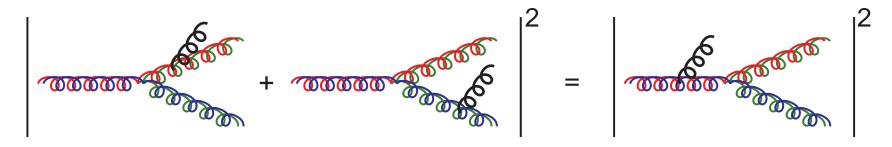
... but in limit of repeated soft emissions $q \to qg$ $(g \to gg, g \to q\overline{q} \text{ not considered})$ one obtains the same inclusive Q emission spectrum as for ME, i.e. divergent ME spectrum \iff infinite number of PS emissions

Coherence

QED: Chudakov effect (mid-fifties)



QCD: colour coherence for **soft** gluon emission



- solved by requiring emission angles to be decreasing
 - or requiring transverse momenta to be decreasing

The Common Showering Algorithms

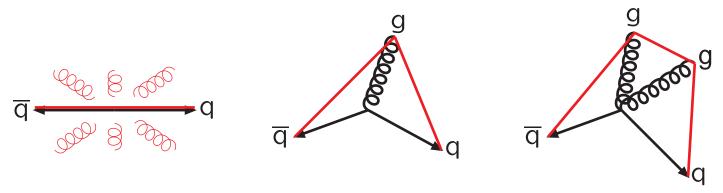
Three main approaches to showering in common use:

Two are based on the standard shower language of $a \rightarrow bc$ successive branchings:

HERWIG:
$$Q^2 \approx E^2(1-\cos\theta) \approx E^2\theta^2/2$$

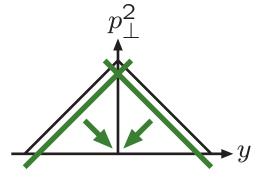
PYTHIA: $Q^2 = m^2$ (timelike) or $= -m^2$ (spacelike)

One is based on a picture of dipole emission $ab \rightarrow cde$:



ARIADNE: $Q^2=p_\perp^2$; FSR mainly, ISR is primitive; there instead LDCMC: sophisticated but complicated

Ordering variables in final-state radiation (LEP era)

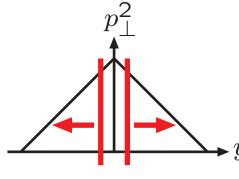


large mass first ⇒ "hardness" ordered coherence brute force

covers phase space ME merging simple $q \rightarrow q\overline{q}$ simple

not Lorentz invariant

no stop/restart ISR: $m^2 \rightarrow -m^2$



large angle first

⇒ hardness not ordered

coherence inherent gaps in coverage **ME** merging messy

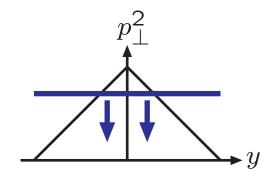
 $g \rightarrow q\overline{q}$ simple

not Lorentz invariant

no stop/restart

ISR: $\theta \rightarrow \theta$

PYTHIA: $Q^2=m^2$ HERWIG: $Q^2\sim E^2\theta^2$ ARIADNE: $Q^2=p_\perp^2$



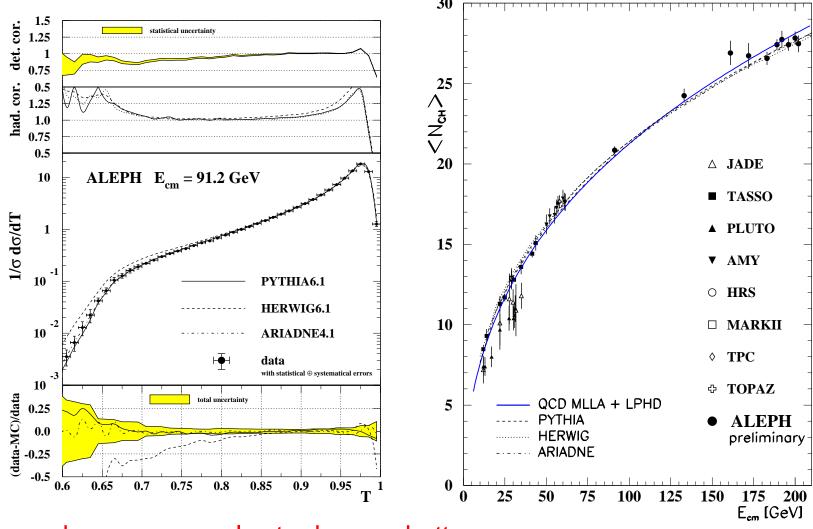
large p_{\perp} first ⇒ "hardness" ordered coherence inherent

covers phase space ME merging simple $g \to q \overline{q} \text{ messy}$ Lorentz invariant can stop/restart

ISR: more messy

Data comparisons

All three algorithms do a reasonable job of describing LEP data, but typically ARIADNE (p_{\perp}^2) > PYTHIA (m^2) > HERWIG (θ)



... and programs evolve to do even better ...

Leading Log and Beyond

Neglecting Sudakovs, rate of one emission is:

$$\mathcal{P}_{\text{q}\to\text{qg}} \approx \int \frac{\text{d}Q^2}{Q^2} \int \text{d}z \, \frac{\alpha_\text{S}}{2\pi} \frac{4}{3} \, \frac{1+z^2}{1-z}$$

$$\approx \alpha_\text{S} \, \ln\left(\frac{Q_{\text{min}}^2}{Q_{\text{min}}^2}\right) \, \frac{8}{3} \, \ln\left(\frac{1-z_{\text{min}}}{1-z_{\text{max}}}\right) \sim \alpha_\text{S} \, \ln^2$$

Rate for *n* emissions is of form:

$$\mathcal{P}_{\mathsf{q} \to \mathsf{q} n \mathsf{q}} \sim (\mathcal{P}_{\mathsf{q} \to \mathsf{q} \mathsf{q}})^n \sim \alpha_\mathsf{S}^n \, \mathsf{In}^{2n}$$

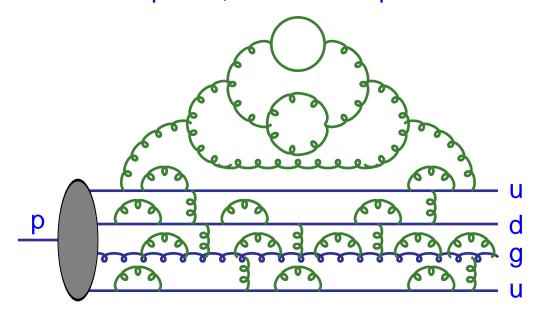
Next-to-leading log (NLL): inclusion of *all* corrections of type $\alpha_{\rm S}^n \ln^{2n-1}$

No existing pp/p \overline{p} generator completely NLL, but

- energy-momentum conservation (and "recoil" effects)
- coherence
- $2/(1-z) \to (1+z^2)/(1-z)$
- scale choice $\alpha_{\rm S}(p_{\perp}^2)$ absorbs singular terms $\propto \ln z, \ln(1-z)$ in $\mathcal{O}(\alpha_{\rm S}^2)$ splitting kernels $P_{\rm q\to qq}$ and $P_{\rm q\to qq}$
- . . .
- ⇒ far better than naive, analytical LL

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:



 $f_i(x,Q^2)$ = number density of partons iat momentum fraction x and probing scale Q^2 .

Linguistics (example):

$$F_2(x, Q^2) = \sum_i e_i^2 x f_i(x, Q^2)$$

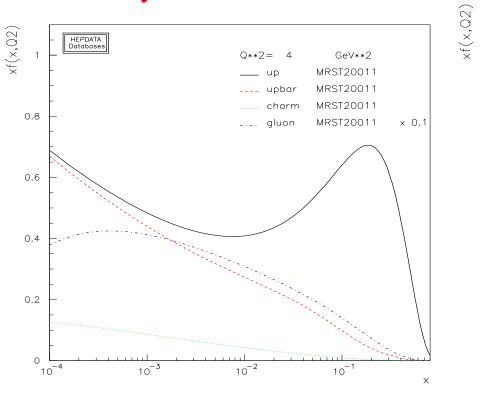
structure function parton distributions

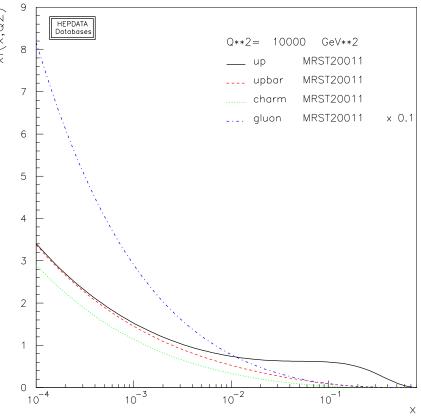
Absolute normalization at small Q_0^2 unknown. Resolution dependence by DGLAP:

$$\frac{\mathrm{d}f_b(x,Q^2)}{\mathrm{d}(\ln Q^2)} = \sum_a \int_x^1 \frac{\mathrm{d}z}{z} f_a(x',Q^2) \frac{\alpha_\mathrm{S}}{2\pi} P_{a \to bc} \left(z = \frac{x}{x'} \right)$$

 $Q^2 = 4 \text{ GeV}^2$

 $Q^2 = 10000 \text{ GeV}^2$

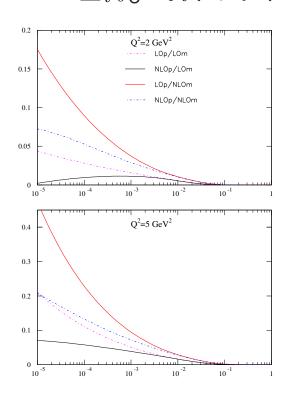


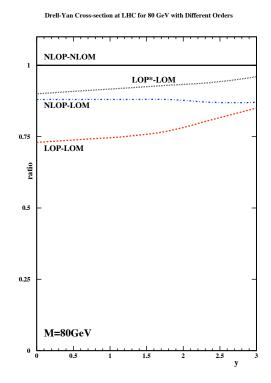


For cross section calculations NLO PDF's are combined with NLO σ 's. Gives significantly better description of data than LO can.

But NLO \Rightarrow parton model not valid, e.g $g(x,Q^2)$ can be negative. Not convenient for LO showers, nor for many LO ME's.

Recent revived interest in modified LO sets, e.g. by Thorne & Sherstnev: allow $\sum_i \int_0^1 x f_i(x, Q^2) dx > 1$; around ~ 1.15





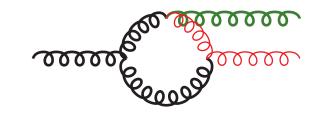
$pp \rightarrow jj$					
pdf type	matrix	σ (μ b)	K-factor		
	element				
NLO	NLO	183.2			
LO	LO	149.8	1.22		
NLO	LO	115.7	1.58		
LO*	LO	177.5	1.03		

$$pp \to H$$

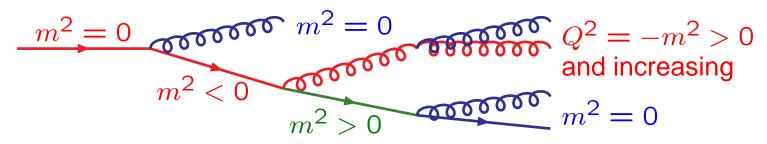
pdf type	matrix	σ (pb)	K-factor
	element		
NLO	NLO	38.0	
LO	LO	22.4	1.70
NLO	LO	20.3	1.87
LO*	LO	32.4	1.17

Initial-State Shower Basics

- Parton cascades in p are continuously born and recombined.
- Structure at Q is resolved at a time $t \sim 1/Q$ before collision.
- A hard scattering at Q^2 probes fluctuations up to that scale.
- A hard scattering inhibits full recombination of the cascade.



Convenient reinterpretation:



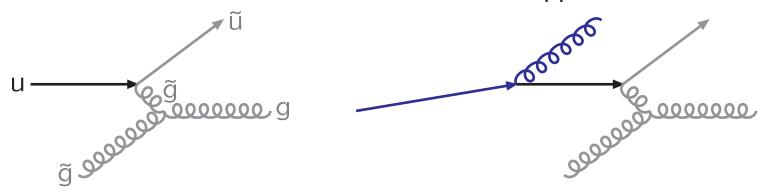
Event generation could be addressed by **forwards evolution**: pick a complete partonic set at low Q_0 and evolve, see what happens.

Inefficient:

- 1) have to evolve and check for all potential collisions, but 99.9...% inert
- 2) impossible to steer the production e.g. of a narrow resonance (Higgs)

Backwards evolution

Backwards evolution is viable and ~equivalent alternative: start at hard interaction and trace what happened "before"



Monte Carlo approach, based on conditional probability: recast

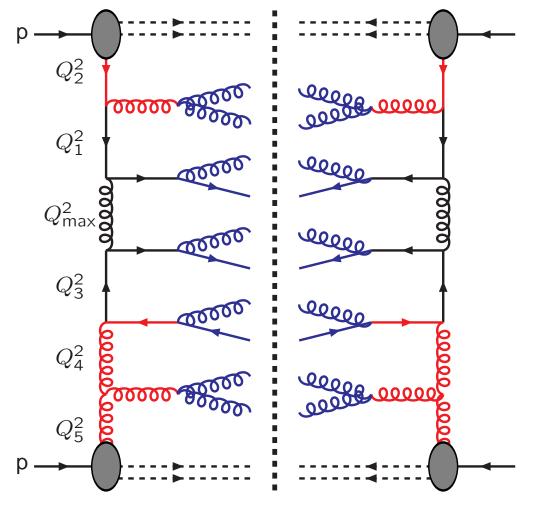
$$\frac{\mathrm{d}f_b(x,Q^2)}{\mathrm{d}t} = \sum_a \int_x^1 \frac{\mathrm{d}z}{z} f_a(x',Q^2) \frac{\alpha_s}{2\pi} P_{a \to bc}(z)$$

with $t = \ln(Q^2/\Lambda^2)$ and z = x/x' to

$$\mathrm{d}\mathcal{P}_b = \frac{\mathrm{df}_b}{f_b} = |\mathrm{d}t| \sum_a \int \mathrm{d}z \, \frac{x' f_a(x',t)}{x f_b(x,t)} \frac{\alpha_\mathrm{S}}{2\pi} \, P_{a \to bc}(z)$$

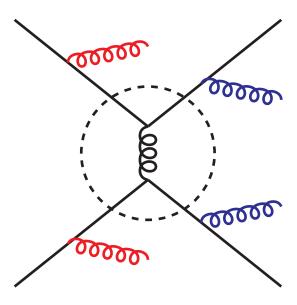
then solve for decreasing t, i.e. backwards in time, starting at high Q^2 and moving towards lower, with Sudakov form factor $\exp(-\int d\mathcal{P}_b)$

Ladder representation combines whole event:



DGLAP:
$$Q^2_{\max} > Q^2_1 > Q^2_2 \sim Q^2_0$$
 $Q^2_{\max} > Q^2_3 > Q^2_4 > Q^2_5 \sim Q^2_0$

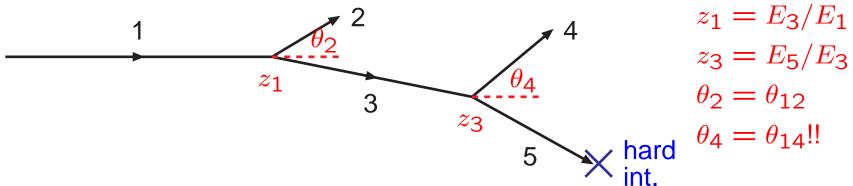
cf. previously:



One possible Monte Carlo order:

- 1) Hard scattering
- 2) Initial-state shower from center outwards
- 3) Final-state showers

Coherence in spacelike showers



with $Q^2 = -m^2 =$ spacelike virtuality

• kinematics only:

$$Q_3^2>z_1Q_1^2,\,Q_5^2>z_3Q_3^2,\,\dots$$
 i.e. Q_i^2 need not even be ordered

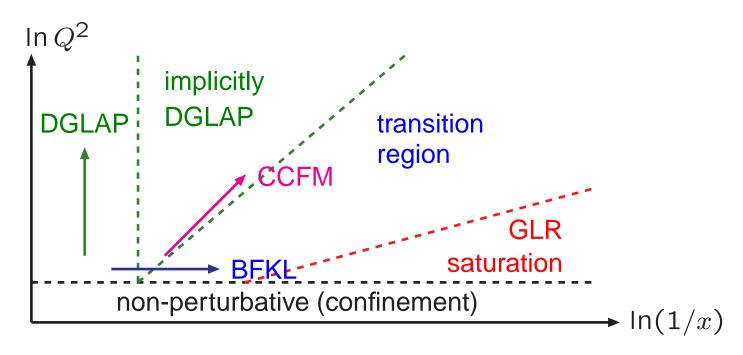
• coherence of leading collinear singularities:

$$Q_5^2 > Q_3^2 > Q_1^2$$
, i.e. Q^2 ordered

• coherence of leading soft singularities (more messy):

$$E_3\theta_4 > E_1\theta_2$$
, i.e. $z_1\theta_4 > \theta_2$
 $z \ll 1$: $E_1\theta_2 \approx p_{\perp 2}^2 \approx Q_3^2$, $E_3\theta_4 \approx p_{\perp 4}^2 \approx Q_5^2$
i.e. reduces to Q^2 ordering as above
 $z \approx 1$: $\theta_4 > \theta_2$, i.e. angular ordering of soft gluons
 \Longrightarrow reduced phase space

Evolution procedures



DGLAP: Dokshitzer–Gribov–Lipatov–Altarelli–Parisi evolution towards larger Q^2 and (implicitly) towards smaller x

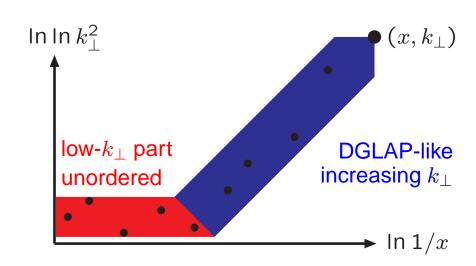
BFKL: Balitsky–Fadin–Kuraev–Lipatov evolution towards smaller x (with small, unordered Q^2)

CCFM: Ciafaloni–Catani–Fiorani–Marchesini interpolation of DGLAP and BFKL

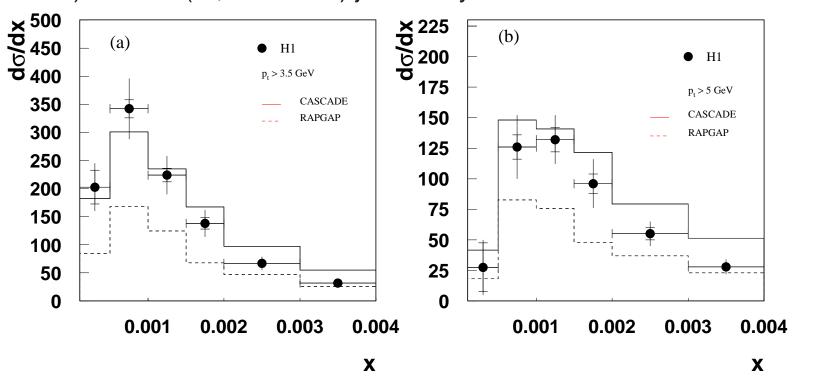
GLR: Gribov–Levin–Ryskin nonlinear equation in dense-packing (saturation) region, where partons recombine, not only branch

Initial-State Shower Comparison

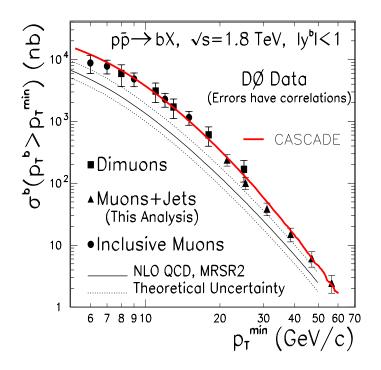
Two(?) CCFM Generators:
(SMALLX (Marchesini, Webber))
CASCADE (Jung, Salam)
LDC (Gustafson, Lönnblad):
reformulated initial/final rad.
⇒ eliminate non-Sudakov

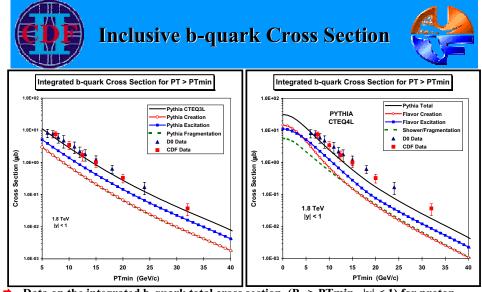


Test 1) forward (= p direction) jet activity at HERA



2) Heavy flavour production





Data on the integrated b-quark total cross section (P_T > PTmin, |y| < 1) for protonantiproton collisions at 1.8 TeV compared with the QCD Monte-Carlo model predictions of PYTHIA 6.115 (CTEQ3L) and PYTHIA 6.158 (CTEQ4L). The four curves correspond to the contribution from flavor creation, flavor excitation, shower/fragmentation, and the resulting total.

DPF2002 May 25, 2002 Rick Field - Florida/CDF

Page 5

but also explained by DGLAP with leading order pair creation

- + flavour excitation (\approx unordered chains)
 - + gluon splitting (final-state radiation)

CCFM requires off-shell ME's + unintegrated parton densities

$$F(x,Q^2) = \int^{Q^2} \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \mathcal{F}(x,k_{\perp}^2) + (\text{suppressed with } k_{\perp}^2 > Q^2)$$

so not ready for prime time in pp

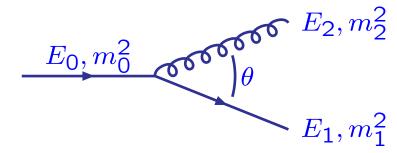
Initial- vs. final-state showers

Both controlled by same evolution equations

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\alpha_\mathrm{S}}{2\pi} \frac{\mathrm{d}Q^2}{Q^2} P_{a\to bc}(z) \, \mathrm{d}z \, \cdot \, (\mathrm{Sudakov})$$
 but

Final-state showers:

 Q^2 timelike ($\sim m^2$)



decreasing E, m^2, θ both daughters $m^2 \ge 0$ physics relatively simple \Rightarrow "minor" variations: Q^2 , shower vs. dipole, . . . Initial-state showers:

 Q^2 spacelike ($\approx -m^2$)

$$E_0,Q_0^2$$
 E_1,Q_1^2

decreasing E, increasing Q^2 , θ one daughter $m^2 \geq 0$, one $m^2 < 0$ physics more complicated \Rightarrow more formalisms: DGLAP, BFKL, CCFM, GLR, . . .

Future of showers

Showers still evolving:

HERWIG has new evolution variable better suited for heavy particles

$$\tilde{q}^2 = \frac{q^2}{z^2(1-z)^2} + \frac{m^2}{z^2}$$
 for $q \to qg$

Gives smooth coverage of soft-gluon region, no overlapping regions in FSR phase space, but larger dead region.

PYTHIA has moved to p_{\perp} -ordered showers (borrowing some of ARIADNE dipole approach, but still showers)

$$p_{\perp \text{evol}}^2 = z(1-z)Q^2 = z(1-z)M^2 \text{ for FSR}$$

 $p_{\perp \text{evol}}^2 = (1-z)Q^2 = (1-z)(-M^2) \text{ for ISR}$

Guarantees better coherence for FSR, hopefully also better for ISR.

SHERPA moves from mass-ordered (\sim PYTHIA) showers to p_{\perp} -ordered (Catani-Seymour) dipoles

Some new dipole shower programs, such as VINCIA

However, main evolution is *matching to matrix elements*

Provisional Summary

- A generator acts as the bridge between parton-level predictions and experimental reality.
- Based on a divide-and-conquer approach.
- Quantum mechanics ⇒ probabilities.
- Not strict time ordering, but conditional ordering from hard to soft scales.
- Parton showers one key aspect of event generators.
 These are continuously being evolved.
- Central tool: Sudakov form factor
 consistent probabilistic formulation to "all orders".

To be continued tomorrow:

- In recent years more emphasis on the matching between matrix elements and parton showers.
- Largely driven by increased capacity for higher-order loop and, in particular, leg calculations.
- So far only one hard scattering, no underlying event, no hadronization.