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Non-perturbative QCD
Corresponding to asymptotic freedom at high momentum scales, we have infra-red
slavery: αS(Q) becomes large a low momenta, (long distances). Perturbation
theory is not reliable for large αS , so non-perturbative methods, (e.g. lattice) must
be used.

Important low momentum scale phenomena

⋆ Confinement: partons (quarks and gluons) found only in colour singlet bound
states, hadrons, size ∼ 1 fm. If we try top separate them it becomes
energetically favourable to create extra partons from the vacuum.

⋆ Hadronization: partons produced in short distance interactions re-organize
themselves to make the observed hadrons.
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Infrared divergences
Even in high-energy, short-distance regime, long-distance aspects of QCD cannot
be ignored. Soft or collinear gluon emission gives infrared divergences in PT. Light
quarks (mq ≪ Λ) also lead to divergences in the limit mq → 0 (mass singularities).

⋆ Spacelike branching: gluon splitting on incoming line (a)

p2
b = (pa − pc)

2 = −2EaEc(1 − cos θ) ≤ 0 .

Propagator factor 1/p2
b diverges as Ec → 0 (soft singularity) or θ → 0

(collinear or mass singularity).
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If a and b are quarks, inverse propagator factor is

p2
b − m2

q = −2EaEc(1 − va cos θ) ≤ 0 ,

Hence Ec → 0 soft divergence remains; collinear enhancement becomes a divergence
as va → 1, i.e. when quark mass is negligible. If emitted parton c is a quark, vertex
factor cancels Ec → 0 divergence.

Timelike branching: gluon splitting on outgoing line (b)

p2
a = (pb + pc)

2 = 2EbEc(1 − cos θ) ≥ 0 .

Diverges when either emitted gluon is soft (Eb or Ec → 0) or when opening angle
θ → 0. If b and/or c are quarks, collinear/mass singularity in mq → 0 limit. Again,
soft quark divergences cancelled by vertex factor.

Similar infrared divergences in loop diagrams, associated with soft and/or collinear
configurations of virtual partons within region of integration of loop momenta.

Infrared divergences indicate dependence on long-distance aspects of QCD not
correctly described by PT. Divergent (or enhanced) propagators imply propagation
of partons over long distances. When distance becomes comparable with hadron
size ∼ 1 fm, quasi-free partons of perturbative calculation are confined/hadronized
non-perturbatively, and apparent divergences disappear.
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Can still use PT to perform calculations, provided we limit ourselves to two classes
of observables:

⋆ Infrared safe quantities, i.e. those insensitive to soft or collinear branching.
Infrared divergences in PT calculation either cancel between real and virtual
contributions or are removed by kinematic factors. Such quantities are
determined primarily by hard, short-distance physics; long-distance effects
give power corrections, suppressed by inverse powers of a large momentum
scale.

⋆ Factorizable quantities, i.e. those in which infrared sensitivity can be absorbed
into an overall non-perturbative factor, to be determined experimentally.

In either case, infrared divergences must be regularized during PT calculation,
even though they cancel or factorize in the end.

⋆ Gluon mass regularization: introduce finite gluon mass, set to zero at end of
calculation. However, as we saw, gluon mass breaks gauge invariance.

⋆ Dimensional regularization: analogous to that used for ultraviolet divergences,

except we must increase dimension of space-time, ǫ = 2 − D
2

< 0.
Divergences are replaced by powers of 1/ǫ.
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Infrared safety and jet algorithms
Jets are recognised by eye when looking at an event display from a high energy
collider detector.

A jet algorithm is the way in which we formalize this concept so that both
experiment and theory can produce rates for jet cross sections. A jet definition
should be simple to implement both in an experimental analysis and in a
theoretical calculations and should yield a finite cross sections at any order of
perturbation theory. In view of the discussion given above a jet measure can only
give a finite cross sections if it is insensitive to soft and collinear emission. Thus for
any jet measure F we have the following two requirements.

Insensitive to soft radiation

F
(n+1)
{is}

(pA, pB ; p1, . . . pi, . . . pn+1)
pi→0
→ F

(n)
{is}

(pA, pB ; p1, . . . pn+1)

Insensitive to collinear radiation

F
(n+1)
{is}

(pA, pB ; p1, . . . pi, pj , . . . pn+1)
pi‖pj
→ F

(n)
{is}

(pA, pB ; p1, . . . , pi + pj , . . . pn+1)
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Sequential recombination jet algorithms.
As an example of an infrared safe jet algorithm, consider kT algorithm in e+e− collision.

1. For each pair of particles i, j work out the separation

yij =
2min(E2

i , E2
j )(1 − cos θij)

Q2

where Ei and Ej are the energies of particles i, j and θij is the angle between
them. In the collinear limit, this expression reduces to k2

T /Q2 where kT is the
transverse momentum of the softer parton with respect to the harder.

2. Find the minimum ymin of all the yij .

3. If ymin is smaller than a jet resolution threhold ycut combine i and j into a single
pseudo particle.

4. Iterate this procedure from step one until all pseudoparticles have a separation
greater than ycut.

This algorithm is infrared and collinear safe because any soft or collinear particle will

be the first to be clustered into a pseudoparticle. The end result will thus be the same

whether the resultant pseudoparticle branches or not.
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Parton branching - kinematics

pa = (Ea +
p2

a

4Ea

, 0, 0, Ea −
p2

a

4Ea

)

pb = (Eb, +Eb sin θb, 0, +Eb cos θb)

pc = (Ec,−Ec sin θc, 0, +Ec cos θc)

the kinematics and notation for the branching of parton a into b + c. We assume
that

p2
b , p2

c ≪ p2
a ≡ t

a is an outgoing parton, which is called timelike branching since t > 0.

The opening angle is θ = θb + θc. Defining the energy fraction as

z = Eb/Ea = 1 − Ec/Ea ,

we have for small angles, t = 2EbEc(1 − cos θ) = z(1 − z)E2
aθ2

using transverse momentum conservation,

θ =
1

Ea

s

t

z(1 − z)
=

θb

1 − z
=

θc

z
.
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Dirac eqn. Massless fermions
The fermions involved in high energy processes can often be taken to be
massless.

We choose an explicit representation for the gamma matrices. The Bjorken and
Drell representation is,

γ0 =

 

1 0

0 −1

!

, γi =

 

0 σi

−σi
0

!

, γ5 =

 

0 1

1 0

!

,

The Weyl representation is more suitable at high energy

γ0 =

 

0 1

1 0

!

, γi =

 

0 −σi

σi
0

!

, γ5 =

 

1 0

0 −1

!

,

In the Weyl representation upper and lower components have different helicities.

Both representations satisfy the same commutation relations.

γµγν + γνγµ = 2gµν

in the Weyl representation γ0γi =

 

σi
0

0 −σi

!

. σ are the Pauli matrices.
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The massless spinors solns of Dirac eqn are

u+(p) =

2

6

6

6

4

p

p+
p

p−eiϕp

0

0

3

7

7

7

5

, u−(p) =

2

6

6

6

4

0

0
p

p−e−iϕp

−
p

p+

3

7

7

7

5

,

where

e±iϕp ≡
p1 ± ip2

p

(p1)2 + (p2)2
=

p1 ± ip2

p

p+p−
, p± = p0 ± p3.

In this representation the Dirac conjugate spinors are

u+(p) ≡ u†
+(p)γ0 =

h

0, 0,
p

p+,
p

p−e−iϕp

i

u−(p) =
h

p

p−eiϕp ,−
p

p+, 0, 0
i

Normalization

u†
±u± = 2p0
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Branching probabilities
Consider the case where

pa = (Ea +
p2

a

4Ea

, 0, 0, Ea −
p2

a

4Ea

)

pb ∼ (Eb, +Ebθb, 0, +Eb)

pc ∼ (Ec,−Ecθc, 0, +Ec)

Thus for example

u†
+(p) =

p

2Eb

»

1,
θb

2
, 0, 0

–

and

u+(pc) ≡ v−(pc) =
p

2Ec

2

6

6

6

4

1

− θc

2

0

0

3

7

7

7

5

Hence for polarization vectors εin = (0, 1, 0, 0), εout = (0, 0, 1, 0)

gūb
+ γ0γ1 vc

− = g
p

4EbEc

„

1,
θb

2

«

 

0 1

1 0

! 

1

− θc

2

!

= −g
p

EbEc(θb − θc)
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−gūb
+γµε

pinµ

a vc
− = g

p

EbEc(θb − θc) = g
p

z(1 − z)(1 − 2z)Eaθ ,

−gūb
+γµε

poutµ
a vc

− = ig
p

EbEc(θb + θc) = ig
p

z(1 − z)Eaθ ,

and the matrix element relation for the branching is

|Mn+1|
2 ∼

g2

t
TRF (z; εa, λb, λc)|Mn|

2

where the colour factor is now Tr(tAtA)/8 = TR = 1/2. The non-vanishing functions
F (z; εa, λb, λc) for quark and antiquark helicities λb and λc are

εa λb λc F (z; εa, λb, λc)

in ± ∓ (1 − 2z)2

out ± ∓ 1

Summing over the polarizations we get

2
h

(1 − 2z)2 + 1
i

= 4(z2 + (1 − z)2).

Note that amplitude vanishes as θ (or t) goes to zero and is independent of any
particular process.
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Branching probabilities
Z

dφ

2π
C F = P̂ba(z)

where P̂ba(z) is the appropriate splitting function, C is the colour factor and F is the
amplitude squared.

dσn+1 = dσn
dt

t
dz

αS

2π
P̂ba(z) .

Including all the color factors we find the results for the unregulated branching
probabilities.

P̂qg(z) = TR

h

z2 + (1 − z)2
i

, TR =
1

2
,

P̂qq(z) = CF

»

1 + z2

(1 − z)

–

,

P̂gq(z) = CF

»

1 + (1 − z)2

z

–

,

P̂gg(z) = CA

»

z

(1 − z)
+

1 − z

z
+ z (1 − z)

–
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DGLAP equation
Consider enhancement of higher-order contributions due to multiple small-angle
parton emission, for example in deep inelastic scattering ( DIS)

Incoming quark from target hadron, initially with low virtual mass-squared −t0 and
carrying a fraction x0 of hadron’s momentum, moves to more virtual masses and
lower momentum fractions by successive small-angle emissions, and is finally
struck by photon of virtual mass-squared q2 = −Q2.

Cross section will depend on Q2 and on momentum fraction distribution of partons
seen by virtual photon at this scale, D(x, Q2).
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To derive evolution equation for Q2-dependence of D(x, Q2), first introduce
pictorial representation of evolution, also useful later for Monte Carlo simulation.

Represent sequence of branchings by path in (t, x)-space. Each branching is a
step downwards in x, at a value of t equal to (minus) the virtual mass-squared
after the branching.

At t = t0, paths have distribution of starting points D(x0, t0) characteristic of
target hadron at that scale. Then distribution D(x, t) of partons at scale t is just
the x-distribution of paths at that scale.
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Change in parton distribution
Consider change in the parton distribution D(x, t) when t is increased to t + δt.
This is number of paths arriving in element (δt, δx) minus number leaving that
element, divided by δx.

Number arriving is branching probability times parton density integrated over all
higher momenta x′ = x/z,

δDin(x, t) =
δt

t

Z 1

x

dx′ dz
αS

2π
P̂ (z)D(x′, t) δ(x − zx′)

=
δt

t

Z 1

0

dz

z

αS

2π
P̂ (z)D(x/z, t)

For the number leaving element, must integrate over lower momenta x′ = zx:

δDout(x, t) =
δt

t
D(x, t)

Z x

0
dx′ dz

αS

2π
P̂ (z) δ(x′ − zx)

=
δt

t
D(x, t)

Z 1

0
dz

αS

2π
P̂ (z)
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Change in parton distribution
Change in population of element is

δD(x, t) = δDin − δDout

=
δt

t

Z 1

0
dz

αS

2π
P̂ (z)

»

1

z
D(x/z, t) − D(x, t)

–

.

Introduce plus-prescription with definition
Z 1

0
dx f(x) g(x)+ =

Z 1

0
dx [f(x) − f(1)] g(x) .

Using this we can define regularized splitting function

P (z) = P̂ (z)+ ,

Plus-prescription, like the Dirac-delta function, is only defined under integral sign.

Plus-prescription includes some of the effects of virtual diagrams.
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DGLAP
We obtain the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ( DGLAP) evolution equation:

t
∂

∂t
D(x, t) =

Z 1

x

dz

z

αS

2π
P (z)D(x/z, t) .

Here D(x, t) represents parton momentum fraction distribution inside incoming
hadron probed at scale t.

In timelike branching, it represents instead hadron momentum fraction distribution
produced by an outgoing parton. Boundary conditions and direction of evolution
are different, but evolution equation remains the same.
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Quarks and gluons
For several different types of partons, must take into account different processes
by which parton of type i can enter or leave the element (δt, δx). This leads to
coupled DGLAP evolution equations of form

t
∂

∂t
Di(x, t) =

X

j

Z 1

x

dz

z

αS

2π
Pij(z)Dj(x/z, t) .

Quark (i = q) can enter element via either q → qg or g → qq̄, but can only leave
via q → qg. Thus plus-prescription applies only to q → qg part, giving

Pqq(z) = P̂qq(z)+ = CF

„

1 + z2

1 − z

«

+

Pqg(z) = P̂qg(z) = TR [z2 + (1 − z)2]
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Gluon can arrive either from g → gg (2 contributions) or from q → qg (or q̄ → q̄g).
Thus number arriving is

δD
g,in =

δt

t

Z 1

0
dz

αS

2π

(

P̂gg(z)

"

Dg(x/z, t)

z
+

Dg(x/(1 − z), t)

1 − z

#

+
P̂qq(z)

1 − z

"

Dq

„

x

1 − z
, t

«

+ Dq̄

„

x

1 − z
, t

«

#)

=
δt

t

Z 1

0

dz

z

αS

2π

n

2P̂gg(z)Dg

“x

z
, t
”

+ P̂qq(1 − z)
h

Dq

“x

z
, t
”

+ Dq̄

“x

z
, t
”io

,

Gluon can leave by splitting into either gg or qq̄, so that

δD
g,out =

δt

t
Dg(x, t)

Z 1

0
dz

αS

2π

h

P̂gg(z) + Nf P̂qg(z) dz
i

.

After some manipulation we find

Pgg(z) = 2CA

"

„

z

1 − z
+

1

2
z(1 − z)

«

+

+
1 − z

z
+

1

2
z(1 − z)

#

−
2

3
Nf TR δ(1 − z) ,

Pgq(z) = Pgq̄(z) = P̂qq(1 − z) = CF
1 + (1 − z)2

z
.
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Using definition of the plus-prescription, can check that

„

z

1 − z
+

1

2
z(1 − z)

«

+

=
z

(1 − z)+
+

1

2
z(1 − z) +

11

12
δ(1 − z)

„

1 + z2

1 − z

«

+

=
1 + z2

(1 − z)+
+

3

2
δ(1 − z) ,

so Pqq and Pgg can be written in more common forms

Pqq(z) = CF

»

1 + z2

(1 − z)+
+

3

2
δ(1 − z)

–

Pgg(z) = 2CA

»

z

(1 − z)+
+

1 − z

z
+ z(1 − z)

–

+
1

6
(11CA − 4Nf TR) δ(1 − z) .
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Parton distributions
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Solution by moments
The structure of the DGLAP equation is,

t
∂

∂t
D(x, t) =

Z 1

x

dz

z

αS

2π
P (z)D(x/z, t) .

Given Di(x, t) at some scale t = t0, factorized structure of DGLAP equation
means we can compute its form at any other scale.

One strategy for doing this is to take moments (Mellin transforms) with respect to x:

D̃i(N, t) =

Z 1

0
dx xN−1 Di(x, t) .

Inverse Mellin transform is

Di(x, t) =
1

2πi

Z

C

dN x−N D̃i(N, t) ,

where contour C is parallel to imaginary axis to right of all singularities of
integrand.

After Mellin transformation, convolution in DGLAP equation becomes simply a
product:

t
∂

∂t
D̃i(x, t) =

X

j

γij(N, αS)D̃j(N, t)
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Anomalous dimensions
The moments of splitting functions give PT expansion of anomalous dimensions
γij :

γij(N, αS) =
∞
X

n=0

γ
(n)
ij (N)

“αS

2π

”n+1

γ
(0)
ij (N) = P̃ij(N) =

Z 1

0
dz zN−1 Pij(z)

From above expressions for Pij(z) we find

γ
(0)
qq (N) = CF

"

−
1

2
+

1

N(N + 1)
− 2

N
X

k=2

1

k

#

γ
(0)
qg (N) = TR

"

(2 + N + N2)

N(N + 1)(N + 2)

#

γ
(0)
gq (N) = CF

"

(2 + N + N2)

N(N2 − 1)

#

γ
(0)
gg (N) = 2CA

"

−
1

12
+

1

N(N − 1)
+

1

(N + 1)(N + 2)
−

N
X

k=2

1

k

#

−
2

3
Nf TR .
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Scaling violation
Consider combination of parton distributions which is flavour non-singlet, e.g.
DV = Dqi − Dq̄i or Dqi − Dqj . Then mixing with the flavour-singlet gluons drops
out and solution for fixed αS is

D̃V (N, t) = D̃V (N, t0)

„

t

t0

«γqq(N,αS)

,

We see that dimensionless function DV , instead of being scale-independent
function of x as expected from dimensional analysis, has scaling violation: its
moments vary like powers of scale t (hence the name anomalous dimensions).

For running coupling αS(t), scaling violation is power-behaved in ln t rather than t.
Using leading-order formula αS(t) = 1/b ln(t/Λ2), we find

D̃V (N, t) = D̃V (N, t0)

„

αS(t0)

αS(t)

«dqq(N)

where dqq(N) = γ
(0)
qq (N)/2πb.

Flavour-singlet distribution and quantitative predictions will be discussed later.
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Combined data on F2 proton
HERA F2
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H1 PDF 2000 fit

H1 94-00

H1 (prel.) 99/00
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E665

NMC

x=6.32E-5 x=0.000102
x=0.000161

x=0.000253

x=0.0004
x=0.0005

x=0.000632
x=0.0008

x=0.0013

x=0.0021

x=0.0032

x=0.005

x=0.008

x=0.013

x=0.021

x=0.032

x=0.05

x=0.08

x=0.13

x=0.18

x=0.25

x=0.4

x=0.65

Now dqq(1) = 0 and dqq(N) < 0 for N ≥ 2. Thus as t increases V

decreases at large x and increases at small x. Physically, this is due to increase
in the phase space for gluon emission by quarks as t increases, leading to
loss of momentum. This is clearly visible in data:
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Flavour singlet combination
For flavour-singlet combination, define

Σ =
X

i

(qi + q̄i) .

Then we obtain

t
∂Σ

∂t
=

αS(t)

2π

ˆ

Pqq ⊗ Σ + 2Nf Pqg ⊗ g
˜

t
∂g

∂t
=

αS(t)

2π
[Pgq ⊗ Σ + Pgg ⊗ g] .

Thus flavour-singlet quark distribution Σ mixes with gluon distribution g: evolution
equation for moments has matrix form

t
∂

∂t

 

Σ̃

g̃

!

=

 

γqq 2Nf γqg

γgq γgg

! 

Σ̃

g̃

!
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Anomalous dimension matrix as a function of N .

Rapid growth at small N in gq and gg elements at lowest order

ln N behaviour at large N in qq and gg elements

NNLO now known
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Anomalous dimensions
Singlet anomalous dimension matrix has two real eigenvalues γ± given by

γ± =
1

2
[γgg + γqq ±

q

(γgg − γqq)2 + 8Nf γgqγqg] .

Expressing Σ̃ and g̃ as linear combinations of eigenvectors Σ̃+ and Σ̃−, we find
they evolve as superpositions of terms of above form with γ± in place of γqq .
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Solution of lowest order DGLAP matrix equation
The reduced DGLAP equation can be written as

d

du

 

Σ̃(u)

g̃(u)

!

= P

 

Σ̃(u)

g̃(u)

!

where u = 1
2πb

ln
αS(µ2

0
)

αS(µ2)

Define projection operators, M±

M+ =
1

γ+ − γ−

h

+ P − γ−1

i

, M− =
1

γ+ − γ−

h

− P + γ+1

i

,

where M±M± = M±,M+M− = M−M+ = 0, M+ + M− = 1 and

P = γ+M+ + γ−M−

The solution is

 

Σ̃(u)

g̃(u)

!

=
h

exp(γ+u)M+ + exp(γ−u)M−

i

 

Σ̃(0)

g̃(0)

!
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Momentum partition vs Q2

For second moment

O+(2, t) = Σ(2, t) + g(2, t) with eigenvalue 0 ,

O−(2, t) = Σ(2, t) −
nf

4CF

g(2, t) with eigenvalue −

„

4

3
CF +

nf

3

«

.

O+, corresponds to the total momentum carried by the quarks and gluons, is
independent of t. The eigenvector O− vanishes in the limit t → ∞:

O−(2, t) =

„

αS(t0)

αS(t)

«d−(2)

→ 0, with d−(2) =
γ−(2)

2πb
= −

`

4
3
CF + 1

3
nf

´

2πb
,

so that asymptotically we have

Σ(2, t)

g(2, t)
→

nf

4CF

=
3

16
nf .
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Asymptotia is approached slowly
The momentum fractions fq and fg in the µ2 = t → ∞ limit are therefore

fq =
3nf

16 + 3nf

, fg =
16

16 + 3nf

.

Scaling violation depends logarithmically on Q2.

Large variation at low Q2
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Gluon distribution
Large number of gluons per unit rapidity

The LHC is a copious source of gluons
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Recap
Perturbative QCD has infrared singularities due to collinear or soft parton
emission. We can calculate infra-red safe or factorizable quantities in perturbation
theory.

For comparison with theoretical predictions jets

must be specified in experiment by infrared safe jet algorithms.

QCD predicts universal branching probailities. The probability of branching is a
property of QCD, and is independent of the process at hand.

Parton evolution can be represented as a branching process from higher values of
x, governed by the DGLAP equation.

DGLAP equation predicts growth at small x and shrinkage at large x with
increasing Q2.

Gluon fluxes become very large at the LHC.
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