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Gauge group for QCD
If we accept that there are three colours of quarks, what gauge groups would be
acceptable.

Is U(3) an acceptable group? U(3) would lead to 9 gluons insted of eight. The
ninth gluon (aā + bb̄ + cc̄)/

√
3 would be invariant under U(3) transformations. It

would therefore be a colour singlet; it would propagate without confinement
leading to a long range strong force, in contrast with observation

Colour factors have been measured by examining the angular structure of 4-jet
events in e+e− collision.

For example, the Delphi collaboration obtained the result, (CERN-PPE/97-112)
NC/NA = 0.38 ± 0.1, to be compared with the SU(3) (3/8-0.375) and U(3)
(3/9=0.3333)

O(3) with only three gluons is similarly excluded, in addition to its exclusion on the
grounds that it would lead to binding of qq as well as qq̄.
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Hadron-hadron processes
In hard hadron-hadron scattering, constituent partons from each incoming hadron
interact at short distance (large momentum transfer Q2).
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For hadron momenta P1, P2 (S = 2P1 · P2), form of cross section is

σ(S) =
X

i,j

Z

dx1dx2Di(x1, µ2)Dj(x2, µ2)σ̂ij(ŝ = x1x2S, αS(µ2), Q2/µ2)

where µ2 is factorization scale and σ̂ij is subprocess cross section for parton
types i, j.

⋆ Notice that factorization scale is in principle arbitrary: affects only what we call
part of subprocess or part of initial-state evolution (parton shower).

⋆ Unlike e+e− or ep, we may have interaction between spectator partons,
leading to soft underlying event and/or multiple hard scattering.
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Factorization of the cross section
Why does the factorization property hold and when it should fail? For a heuristic
argument Consider the simplest hard process involving two hadrons

H1(P1) + H2(P2) → V + X.

Do the partons in hadron H1, through the influence of their colour fields, change the
distribution of partons in hadron H2 before the vector boson is produced? Soft gluons
which are emitted long before the collision are potentially troublesome.
A simple model from classical electrodynamics. The vector potential due to an
electromagnetic current density J is given by

Aµ(t, ~x) =

Z

dt′d~x′ Jµ(t′, ~x′)

|~x − ~x′| δ(t′ + |~x − ~x′| − t) ,

where the delta function provides the retarded behaviour required by causality. Consider
a particle with charge e travelling in the positive z direction with constant velocity β. The
non-zero components of the current density are

Jt(t′, ~x′) = eδ(~x′ − ~r(t′)) ,

Jz(t′, ~x′) = eβδ(~x′ − ~r(t′)), ~r(t′) = βt′ẑ,

ẑ is a unit vector in the z direction.
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Vector potential
At an observation point (the supposed position of hadron H2) described by coordinates
x, y and z, the vector potential (after performing the integrations using the current
density given above) is

At(t, ~x) =
eγ√

[x2 + y2 + γ2(βt − z)2]

Ax(t, ~x) = 0

Ay(t, ~x) = 0

Az(t, ~x) =
eγβ√

[x2 + y2 + γ2(βt − z)2]
,

where γ2 = 1/(1 − β2). Target hadron H2 is at rest near the origin, so that γ ≈ s/m2.
Note that for large γ and fixed non-zero (βt − z) some components of the potential tend
to a constant independent of γ, suggesting that there will be non-zero fields which are
not in coincidence with the arrival of the particle, even at high energy.
However at large γ the potential is a pure gauge piece, Aµ = ∂µχ where χ is a scalar
function. Covariant formulation using the vector potential A has large fields which have
no effect.
For example, the electric field along the z direction is

Ez(t, ~x) = F tz ≡ ∂Az

∂t
+

∂At

∂z
=

eγ(βt − z)

[x2 + y2 + γ2(βt − z)2]
3

2

.

The leading terms in γ cancel and the field strengths are of order 1/γ2 and hence of order
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Parton luminosity
A rough and ready way to estimate cross sections. Let us define the parton

luminosity
dLij

dτ

τ
dLij

dτ
=

1

1 + δij

Z 1

0
dx1dx2

h

`

x1fi(x1, µ2) x2fj(x2, µ2)
´

+
`

1 ↔ 2
´

i

δ(τ−x1x2).

in terms of which we may write the hadronic cross section as

σ(s) =
X

{ij}

Z 1

τ0

dτ

τ

"

1

s

dLij

dτ

#"

ŝσ̂ij

#

,

the first object in square brackets has the dimensions of cross section,

the second expression in square brackets [ŝσ̂] is dimensionless.

The production of a 200 GeV object, (
√

ŝ = 0.2 TeV) produced by gluon fusion at√
s = 7, 14 TeV.

Luminosities are 4 × 105 and 1.5 × 106 pb respectively.
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Parton luminosity plots
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Lepton-pair production

Mechanism for Lepton
pair production,
W -production,
Z-production,
Vector-boson pairs, . . .

Collectively known as the
Drell-Yan process.

Colour average 1/N .

dσ̂

dQ2
=

σ0

N
Q2

q δ(ŝ − Q2), σ0 =
4πα2

3Q2
, cf e+e− annihilation.

In the CM frame of the two hadrons, the momenta of the incoming partons are

p1 =

√
s

2
(x1, 0, 0, x1), p2 =

√
s

2
(x2, 0, 0,−x2) .
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The square of the qq̄ collision energy ŝ is related to the overall hadron-hadron collision
energy by ŝ = (p1 + p2)2 = x1x2s. The parton-model cross section for this process is:

dσ

dM2
=

Z 1

0
dx1dx2

X

q

{fq(x1)fq̄(x2) + (q ↔ q̄)} dσ̂

dM2
(qq̄ → l+l−)

=
σ0

Ns

Z 1

0

dx1

x1

dx2

x2
δ(1 − z)

2

4

X

q

Q2
q {fq(x1)fq̄(x2) + (q ↔ q̄)}

3

5 .

For later convenience we have introduced the variable z = Q2

ŝ
= Q2

x1x2s
.

The sum here is over quarks only and the q̄q contributions are indicated explicitly.
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Next-to-leading order

The contribution of the real diagrams (in four dimensions) is

|M |2 ∼ g2CF

"

u

t
+

t

u
+

2Q2s

ut

#

= g2CF

"

“1 + z2

1 − z

”“−s

t
+

−s

u

”

− 2

#

where z = Q2/s, s + t + u = Q2.

Note that the real diagrams contain collinear singularities, u → 0, t → 0 and soft
singularities, z → 1.

The coefficient of the divergence is the unregulated branching probability P̂qq(z).

Ignore for simplicity the diagrams with incoming gluons.
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Control the divergences by continuing the dimensionality of space-time,
d = 4 − 2ǫ, (technically this is dimensional reduction). Performing the phase space
integration, the total contribution of the real diagrams is

σR =
αS

2π
CF

 

µ2

Q2

!ǫ

cΓ

"

“ 2

ǫ2
+

3

ǫ
− π2

3

”

δ(1 − z) − 2

ǫ
Pqq(z)

− 2(1 − z) + 4(1 + z2)
h ln(1 − z)

1 − z

i

+
− 2

1 + z2

(1 − z)
ln z

#

with cΓ = (4π)ǫ/Γ(1 − ǫ).

The contribution of the virtual diagrams is

σV = δ(1 − z)

"

1 +
αS

2π
CF

 

µ2

Q2

!ǫ

c′Γ

“

− 2

ǫ2
− 3

ǫ
− 6 + π2

”

#

c′Γ = cΓ + O(ǫ3)
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Adding it up we get in dim-reduction

σR+V =
αS

2π
CF

 

µ2

Q2

!ǫ

cΓ

"

“2π2

3
− 6
”

δ(1 − z) − 2

ǫ
Pqq(z) − 2(1 − z)

+ 4(1 + z2)
h ln(1 − z)

1 − z

i

+
− 2

1 + z2

(1 − z)
ln z

#

The divergences, proportional to the branching probability , are universal.

We will factorize them into the parton distributions. We perform the mass
factorization by subtracting the counterterm

2
αS

2π
CF

"

−cΓ

ǫ
Pqq(z) − (1 − z) + δ(1 − z)

#

(The finite terms are necessary to get us to the MS-scheme).

σ̂ =
αS

2π
CF

"

“2π2

3
−8
”

δ(1−z)+4(1+z2)
h ln(1 − z)

1 − z

i

+
−2

1 + z2

(1 − z)
ln z+2Pqq(z) ln

Q2

µ2

#

Similar correction for incoming gluons.
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Application to W,Z production

Agreement with NLO theory is good.

LO curves lie about 25% too low.

NNLO results are also known and lead to a further modest (4%) increase at the
Tevatron.
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Heavy quark production, leading order
The leading-order processes for the production of a heavy quark Q of mass m in
hadron-hadron collisions

(a) q(p1) + q(p2) → Q(p3) + Q(p4)

(b) g(p1) + g(p2) → Q(p3) + Q(p4)

where the four-momenta of the partons are given in brackets.

Process
P|M|2/g4

q q → Q Q 4
9

“

τ2
1 + τ2

2 + ρ
2

”

g g → Q Q
“

1
6τ1τ2

− 3
8

”“

τ2
1 + τ2

2 + ρ − ρ2

4τ1τ2

”

P

indicates averaged (summed) over initial (final) colours and spins. We have
introduced the following notation for the ratios of scalar products:

τ1 =
2p1.p3

ŝ
, τ2 =

2p2.p3

ŝ
, ρ =

4m2

ŝ
, ŝ = (p1 + p2)2.
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The short-distance cross section is obtained from the invariant matrix element in
the usual way:

dσ̂ij =
1

2ŝ

d3p3

(2π)32E3

d3p4

(2π)32E4
(2π)4δ4(p1 + p2 − p3 − p4)

X

|Mij |2.

The first factor is the flux factor for massless incoming particles. The other terms
come from the phase space for 2 → 2 scattering.

In terms of the rapidity y = 1
2

ln((E + pz)/(E − pz)) and transverse momentum,
pT , the relativistically invariant phase space volume element of the final-state
heavy quarks is

d3p

E
= dy d2pT .
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The result for the invariant cross section may be written as

dσ

dy3dy4d2pT

=
1

16π2ŝ2

X

ij

x1fi(x1, µ2) x2fj(x2, µ2)
X

|Mij |2.

x1 and x2 are fixed if we know the transverse momenta and rapidity of the outgoing
heavy quarks. In the centre-of-mass system of the incoming hadrons we may write

p1 =
1

2

√
s(x1, 0, 0, x1)

p2 =
1

2

√
s(x2, 0, 0,−x2)

p3 = (mT cosh y3, pT , 0, mT sinh y3)

p4 = (mT cosh y4,−pT , 0, mT sinh y4).

Applying energy and momentum conservation, we obtain

x1 =
mT√

s

`

ey3 + ey4
´

, x2 =
mT√

s

`

e−y3 + e−y4
´

, ŝ = 2m2
T (1 + cosh∆y).

The quantity mT =
√

(m2 + p2
T ) is the transverse mass of the heavy quarks and

∆y = y3 − y4 is the rapidity difference between them.
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In these variables the leading order cross section is

dσ

dy3dy4d2pT

=
1

64π2m4
T (1 + cosh(∆y))2

X

ij

x1fi(x1, µ2) x2fj(x2, µ2)
X

|Mij |2.

Expressed in terms of m, mT and ∆y, the matrix elements for the two processes are

X

|Mqq|2 =
4g4

9

“ 1

1 + cosh(∆y)

”“

cosh(∆y) +
m2

m2
T

”

,

X

|Mgg|2 =
g4

24

“8 cosh(∆y) − 1

1 + cosh(∆y)

”“

cosh(∆y) + 2
m2

m2
T

− 2
m4

m4
T

”

.

As the rapidity separation ∆y between the two heavy quarks becomes large

X

|Mqq|2 ∼ constant,
X

|Mgg|2 ∼ exp ∆y .

The cross section is damped at large ∆y and heavy quarks produced by qq̄

annihilation are more closely correlated in rapidity those produced by gg fusion.

Parton Model and perturbative QCDLecture III: The QCD improved parton model – p.19/36



Applicability of perturbation theory?
Consider the propagators in the diagrams.

(p1 + p2)
2 = 2p1.p2 = 2m2

T

`

1 + cosh∆y
´

,

(p1 − p3)
2 − m2 = −2p1.p3 = −m2

T

`

1 + e−∆y
´

,

(p2 − p3)
2 − m2 = −2p2.p3 = −m2

T

`

1 + e∆y
´

.

Note that the propagators are all off-shell by a quantity of least of order m2.

Thus for a sufficiently heavy quark we expect the methods of perturbation theory
to be applicable. It is the mass m (which by supposition is very much larger than
the scale of the strong interactions Λ) which provides the large scale in heavy
quark production. We expect corrections of order Λ/m

This does not address the issue of whether the charm or bottom mass is large
enough to be adequately described by perturbation theory.
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Heavy quark production in O(α3
S)

In NLO heavy quark production m is the heavy quark mass.

σ(S) =
X

i,j

Z

dx1dx2 σ̂ij(x1x2S, m2, µ2)Fi(x1, µ2)Fj(x2, µ2)

σ̂i,j(ŝ, m
2, µ2) = σ0cij(ρ̂, µ2)

where ρ̂ = 4m2/ŝ, µ̄2 = µ2/m2, σ0 = α2
S(µ2)/m2 and ŝ in the parton total c-of-m

energy squared. The coupling satisfies

dαS

d ln µ2
= −b0

α2
S

2π
+ O(α3

S), b0 =
11N − 2nf

6

cij

“

ρ,
µ2

m2

”

= c
(0)
ij (ρ) + 4παS(µ2)

h

c
(1)
ij (ρ) + c

(1)
ij (ρ) ln(

µ2

m2
)
i

+ O(α2
S)
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The lowest-order functions c
(0)
ij are obtained by integrating the lowest order matrix

elements

c
(0)
qq (ρ) =

πβρ

27

"

(2 + ρ)

#

,

c
(0)
gg (ρ) =

πβρ

192

"

1

β

ˆ

ρ2 + 16ρ + 16
˜

ln
“1 + β

1 − β

”

− 28 − 31ρ

#

,

c
(0)
gq (ρ) = c

(0)
gq (ρ) = 0 ,

and β =
√

1 − ρ.

The functions c
(0)
ij vanish both at threshold (β → 0) and at high energy (ρ → 0).

Note that the quark-gluon process is zero in lowest order, but is present in higher
orders.
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The functions c
(1)
ij are also known

Examples of higher-order corrections to heavy quark production.

In order to calculate the cij in perturbation theory we must perform both
renormalization and factorization of mass singularities. The subtractions required
for renormalization and factorization are done at mass scale µ.
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Higher order results, c
(1)
ij
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µ dependence
µ is an unphysical parameter. The physical predictions should be invariant under
changes of µ at the appropriate order in perturbation theory. If we have performed a
calculation to O(α3

S), variations of the scale µ will lead to corrections of O(α4
S),

µ2 d

dµ2
σ = O(α4

S).

The term c(1), which controls the µ dependence of the higher-order perturbative
contributions, is fixed in terms of the lower-order result c(0):

c
(1)
ij (ρ) =

1

8π2

"

4πbc
(0)
ij (ρ) −

Z 1

ρ

dz1

X

k

c
(0)
kj

(
ρ

z1
)P

(0)
ki

(z1)

−
Z 1

ρ

dz2

X

k

c
(0)
ik

(
ρ

z2
)P

(0)
kj

(z2)

#

.
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In obtaining this result we have used the renormalization group equation for the running
coupling

µ2 d

dµ2
αS(µ2) = −bα2

S + . . .

and the lowest-order form of the GLAP equation

µ2 d

dµ2
fi(x, µ2) =

αS(µ2)

2π

X

k

Z 1

x

dz

z
P

(0)
ik

(z)fk(
x

z
, µ2) + . . . .

This illustrates an important point which is a general feature of renormalization group
improved perturbation series in QCD. The coefficient of the perturbative correction
depends on the choice made for the scale µ, but the scale dependence changes the
result in such a way that the physical result is independent of that choice. Thus the scale
dependence is formally small because it is of higher order in αS . This does not assure
us that the scale dependence is actually numerically small for all series. A pronounced
dependence on the scale µ is a signal of an untrustworthy perturbation series.
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Scale dependence in top production
Inclusion of the higher order terms leads to a stabilization of the top cross section.
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Top production at LHC

At LHC top cross section is more than 100 times bigger than at Tevatron.
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NLO QCD: Parton level integrators
We would like to go beyond the results for the total cross section to get results for
distributions.

We have two separate divergent integrals which must be combined before
numerical integration

σNLO =

Z

m+1
dσR +

Z

m

dσV

Note that the jet definition can be arbitrarily complicated.

dσR = PSm+1|Mm+1|2F J
m+1(p1, . . . pm+1)

We need to combine without knowledge of F J .

Two solutions: phase space slicing and subtraction.

Illustrate with a simple one-dimensional example.

|Mm+1|2 ≡ 1

x
M(x)

x is the energy of an emitted gluon.
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Divergences regularized in d = 4 − 2ǫ dimensions. Two solutions: phase space
slicing and subtraction.

Thus the full cross section in d dimensions is

σ =

Z 1

0

dx

x1+ǫ
M(x)F J

1 (x) +
1

ǫ
νF J

0

Infrared safety: F J
1 (0) = F J

0 , KLN cancellation theorem, M(0) = ν
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Phase space slicing
Introduce arbitrary cutoff δ ≪ 1

σ =

Z δ

0

dx

x1+ǫ
M(x)F J

1 (x) +

Z 1

δ

dx

x1+ǫ
M(x)F J

1 (x) +
1

ǫ
νF J

0 (1)

≃
Z δ

0

dx

x1+ǫ
νF J

0 +

Z 1

δ

dx

x
M(x)F J

1 (x) +
1

ǫ
νF J

0 (2)

=

Z 1

δ

dx

x
M(x)F J

1 (x) + ln(δ)νF J
0 (3)

(4)

Procedure becomes exact for δ → 0 but numerical errors blow up. We have to
compromise to find the best value of δ.

Systematized by Giele-Glover-Kosower, JETRAD,DYRAD,EERAD
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Subtraction method
Exact identity

σ =

Z 1

0

dx

x1+ǫ

h

M(x)F J
1 (x) −M(0)F J

0

i

+

Z 1

0

dx

x1+ǫ
νF J

0 +
1

ǫ
νF J

0 (5)

=

Z 1

0

dx

x

h

M(x)F J
1 (x) −M(0)F J

0

i

+ O(1)νF J
0 (6)

We have divided the problem into two separately finite integrals.

Subtracted cross section must be valid everywhere in phase space.

Subtraction method used in NLOJET++, MCFM
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MCFM overview John Campbell and R.K. Ellis

Parton level cross-sections predicted to NLO in αS

pp̄ → W±/Z pp̄ → W+ + W−

pp̄ → W± + Z pp̄ → Z + Z

pp̄ → W± + γ pp̄ → W±/Z + H

pp̄ → W± + g⋆ (→ bb̄) pp̄ → Zbb̄

pp̄ → W±/Z + 1 jet pp̄ → W±/Z + 2 jets

pp̄(gg) → H pp̄(gg) → H + 1 jet

pp̄(V V ) → H + 2 jets pp̄ → t + X

pp → t + W

⊕ less sensitivity to µR, µF , rates are better normalized, fully differential
distributions.

⊖ low particle multiplicity (no showering), no hadronization, hard to model
detector effects

⋆ Based on the subtraction method
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W + jet production

0 1 2 3 4

T
he

or
y

σ/
D

at
a

σ 1

2

MLM uncertaintyCDF II / MLM
SMPR uncertaintyCDF II / SMPR

CDF II / MCFM

MCFM Scale uncertainty
MCFM PDF uncertainty

Inclusive Jet Multiplicity (n)
0 1 2 3 4

n-
1

σ / nσ
R

 =
 

0.05

0.1

0.15
CDF II
MCFM
MLM
SMPR

Data is in agreement NLO prediction from MCFM

Errors on tree level predictions (Alpgen+Herwig+MLM merging) and
(Madgraph+Pythia+CKKW jet merging) are much larger.
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New results on W + 3-jet production
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Leading color results, arXiv:0906.1445v1

CDF Data is in agreement NLO prediction from MCFM

See also Berger et al, arXiv:0907.1984
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Conclusions
The factorization property allows us to make predictions for processes at high
energy.

Crude information about cross section rates can be obtained from parton
luminosities.

Because of the factorization property, the QCD improved parton model gives a
formalism which can be systematically improved by calculating higher orders in
perturbation theory.

The NLO formulation of QCD processes gives better information about
normalization, and less dependence on unphysical scales.

Residual scale dependence can give an estimate of the size of the uncalculated
higher order terms.

NLO is hence the first serious approximation in QCD.

NLO calculation can be performed using the subtraction or slicing method to give
information about distributions.

A vigorous theoretical effort is underway to extend QCD results to more
complicated multi-leg processes such as W+jet.
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