LHC Detectors and Early Physics

Outline Part 2

- Introduction
 - Basic processes, rates

Low-pT and QCD

- Minimum Bias, UE, MPI
- Jet cross sections

Electroweak Physics

- W and Z production
- 🕴 + jets
- Top Physics
- Further Issues

Disclaimer 1 : I concentrate on multi-purpose detectors ATLAS and CMS and high-p_T physics. Some bias towards CMS, for practical reasons only ;-) Nothing on LHCb and ALICE....

Disclaimer 2 : Some slides or slide content taken from seminars/lectures/write-ups of other LHC colleagues, eg. K. Jakobs, O. Buchmüller, L. Dixon, M. Dittmar, D. Froidevaux, F. Gianotti, D. Green, J. Virdee, ...

Excellent resources : CMS Physics TDR, CMS-TDR-008-1; ATLAS Overview: arXiv:0901.0512; https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults

Introduction : Measurements of hard processes

The hard scattering

Hard Scattering = processes with large momentum transfer (Q^2)

Represent only a tiny fraction of the total inelastic pp cross section (~ 70 mb) eg. $\sigma(pp \rightarrow W+X) \sim 150 \text{ nb} \sim 2 \cdot 10^{-6} \sigma_{tot}(pp)$

Parton Distribution functions

 \rightarrow Test of proton structure down to 10⁻¹⁸ m

ETH Institute for Particle Physics

Parton Distribution functions

what are useful processes for this?

9

9

9

 \mathbf{X}

ETH Institute for Particle Physics

Event rates (at 14 TeV....)

Event production rates at L=10³³ cm⁻² s⁻¹ and statistics to tape

Process	Events/s	Evts on tape, 10 fb ⁻¹	
W→ev	15	10 ⁸	
Z →ee	1	10 ⁷	
tt	1	10 ⁶	
Minimum bias	10 ⁸	10 ⁷ مassumin] g 1%
QCD jets p _T >150 GeV/c	10 ²	10 ⁷ of trigg bandwi	ger idth
b b → μ X	10 ³	107	
gluinos, m=1 TeV	0.001	10 ³	
Higgs, m=130 GeV	0.02	104	

10⁷ events to tape every 3 days, assuming 30% data taking efficiency, 1 PB/year/exp

statistical error negligible after few days (in most cases) ! dominated by systematic errors (detector understanding, luminosity, theory)

We will start at a lower Ecm

LO cross sections in pb, inclusive

E _{cm} [TeV]/ Process	7	10	14	Evts (7 TeV) in 200/pb	Ratio 7/14
QCD pt>100 GeV	3.2E+05	6.8E+05	1.4E+06	6.4E+07	0.2
Z incl	2.5E+04	3.6E+04	5.7E+04	5.0E+06	0.4
W incl	9.5E+04	1.4E+05	2.1E+05	1.9E+07	0.5
ttbar	8.4E+01	2.2E+02	4.8E+02	1.7E+04	0.2
H(150 GeV)	4.0	8.2	16.0	8.0E+02	0.3

no branching ratios included !

- \bigcirc Thus: Early physics at E_{cm} = 7 TeV means

 - Exclusive B production
 - EWK (Z,W) physics
 - some top (not too much, but should be ok)
 - 🕴 no SM Higgs
 - some surprise ?

0+65+0

First Physics runs (2010 ...)

- After first "good" 10 pb⁻¹
 - ✤ plenty of Min Bias events, many jets...

 - ~2500 Z, decaying into two leptons
 - ~200 semi-leptonic top-pair events
 - Measure rates, align and calibrate better
- After first "good" 100 pb⁻¹
 - W(Z)+jets rates well measurable
 - Jet calibration, MET calibration (for SUSY)
 - Inclusive leptons, di-leptons, photons, di-photon triggers (for Higgs)
- General From 100 pb⁻¹ to 1 fb⁻¹ (part of it not in 2010)
 - Standard model candles
 - Top pair prod., W/Z cross sections, PDF studies, QCD studies, b-jet production
 - Do extensive MC tuning
 - Early Higgs boson search, exclusions
 - H→γγ,WW,ZZ
 - Early SUSY-BSM searches
 - MET + anything, di-jet, di-leptons, di-photon, resonances....

Why SM physics?

Interesting in its own right

- measure (calculable) event rates, cross sections
- establish (dis)agreement with SM, constrain SM
- challenge theoretical calculations at high Q²
- demonstrate "working" experiment with well known processes
- Backgrounds to many searches : check MC simulations geg. W/Z+jets, Multi-Jets, top-pair events
- Constrain (relative) PDFs
- Alternative measurements of luminosity

Our Master Equation

Measurements of "soft" processes (low p_T)

Underlying Event : Definition

The Underlying Event:

Everything except the hard scattering component of the collision:

ISR, FSR, spectators, beam-beam remnant multiple-parton interactions

Modeling controlled by p⊤ cut-off parameter: Controls number of interactions

 $< N_{\rm int} > = \frac{\sigma_{\rm parton-parton}}{\sigma_{\rm proton-proton}}$

and hence the multiplicity.

Tuning for LHC: issue is the energy dependence of the parameters

Issues / interesting questions / Motivations:

- Note : UE != MB
- Structure of hadrons, factorization of interactions
- Tuning of MC models, extrapolation to LHC energies
- Detector commissioning
- impact on selection efficiencies (isolation), jet energy scale, MET, low-pT jets, jet vetos

UE studies : Observables

see CDF study, R. Field et al.

From DY muon-pair production (using muon triggers)

- defined in all the phi-plane
- after removing the muon pairs, everything else is UE

Minimum Bias

- chg. tracks : multiplicity, p_T, rapidity distributions
- chg. multiplicity versus effective energy = E_{beam} E_{leading baryon}

Using Charged Jets (using MB and jet triggers)

- Topological structure of p-p collision from charged tracks
- Jets found with massless charged tracks as input
- The leading Ch_jet1 defines a direction in the phi-plane
- The transverse region is particularly sensitive to the UE

Note :

need corrections for track reco eff. and acceptance

14

Examples of "Measurements"

Inclusive charged particle production

Multiple Parton Interactions

- New handles to estimate multiple partonic interaction rates
 - count pairs of mini-jets in MB interactions, reconstructed using charged tracks
 - same-sign W-pair production
 - based on D. Treleani, Phys. Rev. D72, 034022(2005)
- new MPI models in PYTHIA
 - impact on jet cross sections studied
 - models have to be tuned on data
- should we be worried?
 - a surprise in the rate of additional jets above 20-30 GeV because of MPI could have considerable impact on jet vetos...

16

Jets

JET production at hadron colliders Φ

What is a jet?

"cluster/spray of particles (tracks, calorimeter deposits) or flow of energy in a restricted angular region"

clear : need some algorithmic definition

e 65 - 65

A short digression: Jet Algorithms

Jets in Hadron Collider Detectors Detectors

Jets in DØ

CDF

- Introducing a cone prescription seems "natural"...
- But how to make it more quantitative?
 - don't want people "guessing" at whether there are 2,3, ... jets

The natural (?) definition of a jet in a hadron collider environment

Requirements

- Applicable at all levels
 - partons, stable particles
 - for theoretical calculations
 - measured objects (calorimeter objects, tracks, etc)
 - and always find the same jet
- Independent of the very details of the detector
 - example : granularity of the calorimeter, energy response,...
- Easy to implement !
- Infrared and Collinear safe!
- Close correspondence between

Energy

Momentum

angle

G. Dissertori : LHC Detectors and early Physics

Recombination algorithms (k_T type)

- k_T jets are infrared and collinear safe
- There are no overlapped jets
- Every particle, or detector tower is unambiguously assigned to a single jet
- No biases from seed towers
- k_T jets are sensitive to soft particles and area could depend on pile-up

N. Varelas

Recent developments

- Fast kT Algorithm improves speed from O(N³) to O(N InN)
 - G.Salam, M.Cacciari, Phys. Lett. B641, 41 (2006)
 - Add ghost particles to determine the area of jets
 - Could be used to subtract pile-up contributions
 - Already adopted as the default k_T algorithm at LHC
- Other recombination algorithms:

$$d_{ii} = p_{T,i}^{2p} \quad d_{ij} = min(p_{T,i}^{2p}, p_{T,j}^{2p}) \frac{\Delta R_{ij}^2}{D^2}$$

- p=1 → regular k_T jet algorithm
- p=0 → Cambridge/Aachen jet algorithm
 - Dokshitzer, Leder, Moretti, Webber '97 (Cambridge) Wobisch, Wengler '99 (Aachen)
- p=-1 → "Anti-k_T" jet algorithm
 - Cacciari, Salam, Soyez '08
 - Soft particles will first cluster with hard particles before among themselves
 - Almost a cone jet near hard partons
 - No merge/split
 - Currently under consideration by CMS (already adopted by ATLAS)

N. Varelas

Further difficulties

- Pile Up : many additional soft proton-proton interactions
 - up to 20 at highest LHC luminosity
- Underlying event
 - beam-beam remnants, initial state radiation, multiple parton interactions
 - gives additional energy in the event
- Note : contributions from UE and from hadronization effects tend to cancel
- All this additional energy has nothing to do with jet energies
 - have to subtract it

ETH Institute for Particle Physics

End of the digression

What do we have to measure? **D** ETH Institute for Particle Physics

Inclusive Jet cross section at the LHC Φ Particle Physics

- After MB studies, jets will be the first objects seen and measured
- Enormous cross section, so statistical errors quickly negligible
 - 1% at p_T=1 TeV for 1 fb⁻¹ (central)
 - ♣ **10%** for 3 < *η* < 5
- Steeply falling cross
 section : energy scale
 knowledge most relevant

Problem 1 : Energy scale

- ETH Institute for Particle Physics
- Question : how well do we know the energy calibration?
- Critical because of very steeply falling spectrum!

G. Dissertori : LHC Detectors and early Physics

- The energy resolution can distorts the spectrum
- Again : Critical because of very steeply falling spectrum!

Inclusive Jets : Projections

Note : left plot : "data points" are from PYTHIA, but "theory" is a NLO calc. ! right plot : also shown : hypothetical contribution from new contact interactions

0+65+0

ETH Institute for Particle Physics

Inclusive Jets : Systematics

- a 10% jet energy scale uncertainty (which is realistic at start-up) gives a 60% error on the cross section!
- Second Control in-situ with : photon/Z+jets and W→ JJ in top decays
- Other sources : jet corrections (det → had → part), UE subtraction
 (det → had → part), UE subtraction

ETH Institute for Particle Physics

Jet+Photon and Jet Energy Scale (JES)

- Jet calibration using
 p_T balance in
 Jet+Photon events
 - Selection : isolated photons, no highp_T secondary jet, photon and jet well separated in transverse plane
 - 10% (5%) precision expected for 100 pb⁻¹ (1 fb⁻¹)

Annihilation Process

0+_____

Jet Energy Scale

- procedures for obtaining data-driven jet energy corrections
- Factorized Approach :

Possible time-line:

Day one:

Test-beam tuned MC simulation to provide corrections, backed up by the first pass to data based corrections.

Intermediate:

More developed data-based corrections. Use data-driven MC (re-tuned with collider data) to understand biases, extend to more particle types and algorithms

Long term:

A combination of a very accurate data-driven MC and well understood data methods would allow to achieve ultimate errors and support a large number of jet types and algorithms.

ETH Institute for Particle Physics

Di-Jets (CMS PDTR)

0+_65_+®

Further (early) jet observables

W and Z production

... one of the first W and Z's in UA1/2

Predictions

- Probably best known cross section at LHC, NNLO, differentially
- a well suited normalization process

Anastasiou, Dixon, Petriello, Melnikov : differential in W/Z rapidity Petriello, Melnikov : fully differential in lepton momenta

Predictions

Experimental signature

- high-p⊤
- isolated
- opposite charge
- ~70 < m_{ll}< ~110 GeV

Example: electron reconstruction

- isolated cluster in EM calorimeter
- p_T > 20 GeV
- shower shape consistent with expectation from electrons
- matching charged track

W: single charged leptons

- high-p⊤
- isolated
- ET,miss (from neutrino)

transverse mass: $M_W^T = \sqrt{2 \cdot P_T^l \cdot P_T^\nu \cdot (1 - \cos \Delta \phi^{l,\nu})}$

Tag and Probe

- Take well reconstructed object (eg. electron after tight cuts), as well one with looser cuts (=Probe)
- Use further constraint (eg. Z mass) to define a Tag (ie. tight selection + mass constraint)
- Now measure efficiency of applying further cuts on probe object!

Figure 1: Track matching efficiency as a function of supercluster E_T for $-1.2 < \eta < -0$.

Figure 6: Electron preselection efficiency versus probe η .

W/Z and PDF constraints

Set Simulation Study by ATLAS (HERA-LHC workshop, hep-ph/051119)

- produce W sample with CTEQ6.1 pdf set, using a random 4% error on "data"
- correct back for detector acceptance, using ZEUS-PDFs and include these data into the ZEUS fit
- Fit shows : error on parameter λ (x g (x) ~ x^{- λ}) reduced by 35 %

ETH Institute for Particle Physics

Luminosity Measurement

Expected uncertainty from luminosity monitors \approx 10 - 5% (?)

Alternative : use W/Z counting as luminosity monitor Dittmar et al.

$$N_{pp \to Z} = L_{pp} \cdot PDF(x_1, x_2, Q^2) \cdot \sigma_{q, \overline{q} \to Z} (+HO)$$

count extract as inputs

or better : normalize processes to number of Zs (parton-parton luminosity)

$$N_{pp \to WW} = N_{pp \to Z} \cdot \frac{\sigma_{q,\bar{q} \to WW}}{\sigma_{q,\bar{q} \to Z}} \cdot \frac{PDF(x_1, x_2, Q^{\prime 2})}{PDF(x_1, x_2, Q^{2})}$$

$$\Delta L_{pp} = 0!$$

$$\Delta L_{pp} =$$

W/Z + jets

- Extremely important background for many searches
 - in particular for SUSY searches in the "jets+lepton+E_{Tmiss}" channel
- Remember : Jet scale uncertainty extremely important (xsec as function of jet p_T), also here
 - can expect some 30 % uncertainty from that. Probably less in case of rate measurements.
- Should also have a more "inclusive" look at it : Measuring the Z p_T can be done with a relative precision at the per-cent level (leptons (!) again), will be invaluable for checking predictions and tuning MCs

ETH Institute for Particle Physics

000000

00000

Again, look at ratios!

- Useful to test QCD, look for deviations
- and many uncertainties cancel

0+______

Top production

Top Quark Physics

0+_____

Both W's decay via $W \rightarrow lv$ (l=e or μ ; 5%)

dilepton channel

One W decays via W→ℓv (l=e or µ; 30%) lepton + jet channel

Both W's decay via W→qq (44%) all hadronic, not very useful

Important experimental signatures: : - Lepton(s)

Missing transverse momentum

- b-jet(s)

K. Jakobs, CSS07

Top identification

0+65+P

Top Production (example : semi-leptonic case)

See the top immediately with simple selection : Missing E_T , 1 lepton, \geq 4 jets, even without b-tag (!), cut on hadronic W mass

Example (ATLAS study, 14 TeV):

- Observe it with 30 pb⁻¹
- § σ(tt) to 20 % with 100 pb⁻¹
- M(t) to 7-10 GeV

Once b-tagging is understood:

Very high S/B achievable ~ 27 !

Backgrounds : W+4j, Wbb+2j(3j) (minor here)

relevant also for single-top

Study the top quark properties

mass, charge, spin, couplings, production and decay, $\Delta M_{top} \thicksim 1 \mbox{ GeV } ?$

important background for searches Jet energy scale from W→jet jet, commission b-tagging

Further issues...

Background extrapolation

0-65-0

Importance of "Cleaning"

- during very early days we will have to be careful
- will not yet understand "perfectly" some "noise" contributions, from detector, the machine, cosmics
- Example : Missing transverse Energy

Warnings...

- Always try to be as independent from the Monte Carlo as possible!
 - eg. find a "Standard Model candle" for calibration
 - Obtain backgrounds from the data whenever possible
 - Easy if we have mass peak (from sidebands)
 - More difficult in case of excess in high-energy tails, in particular in relation to MET or high- E_T jets
 - Study carefully the validity of a Monte Carlo, and what it is exactly based on
 - eg. LO 2-to-2 process + parton shower, or 2-to-n + parton shower, or NLO+parton shower, or …
- Worry in particular about systematic errors in your search analysis when S/B << 1 !!</p>
 - be careful with calculation of significance

Summary of Part 2

"The only place where success comes before work is the dictionary"

- SM physics at the LHC: we will have to re-discover the SM before going to other discoveries
- Test the SM at an unprecedented energy scale
 - Iots of highly exciting and interesting physics
 - Jets, Ws and Zs, tops, ...
- These are also important tools to
 - understand, study, calibrate and improve the detector performance
 - constrain physics input (pdfs, underlying event)
 - necessary input for all other measurements
- We are getting ready now to be able to perform all these measurements and run these tools as early as possible, once the data start flowing in....

