Supersymmetry?

- Would unify matter particles and force particlesRelated particles spinning at different rates
 - $0 \frac{1}{2} 1 \frac{3}{2} 2$

Higgs - Electron - Photon - Gravitino - Graviton (Every particle is a 'ballet dancer')

- Would help fix particle masses
- Would help unify forces
- Predicts light Higgs boson
- Could provide dark matter for the astrophysicists and cosmologists

A Bitino of Shistory

- 1967: Impossible to combine internal and external (Lorentz) symmetry – Coleman & Mandula
- 1971: Extend Poincaré symmetry using fernionic charges – Gol'fand & Likhtman
- 1971: Supersymmetry in 2 dimensions (for baryons in strings) – Neveu & Schwarz; Ramond
- 1973: First supersymmetric field theories in 4 dimensions: nonlinear for V – Volkov & Akulov
 renormalizable theories – Wess & Zumino

Why Supersymmetry (Susy)?

- Hierarchy problem: why is $m_W << m_P$? ($m_P \sim 10^{19}$ GeV is scale of gravity)
- Alternatively, why is

 $G_F = 1/m_W^2 >> G_N = 1/m_P^2$?

• Or, why is

$$\begin{split} V_{Coulomb} >> V_{Newton} ? \ e^2 >> G \ m^2 = m^2 \ / \ m_P^2 \end{split} \\ \bullet \ Set by hand? What about loop corrections? \\ \delta m_{H,W}^{\ 2} = O(\alpha/\pi) \ \Lambda^2 \end{split}$$

- Cancel boson loops ⇔ fermions
- Need $|m_B^2 m_F^2| < 1 \text{ TeV}^2$

Loop Corrections to Higgs Mass²

Consider generic fermion and boson loops:

• Each is quadratically divergent: $\int^{\Lambda} d^4k/k^2$

$$\Delta m_H^2 = -\frac{y_f^2}{16\pi^2} [2\Lambda^2 + 6m_f^2 \ln(\Lambda/m_f) + ...]$$

$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} [\Lambda^2 - 2m_S^2 \ln(\Lambda/m_S) + ...]$$

• Leading divergence cancelled if

$$\lambda_S = y_f^2 \ge 2$$
 Supersymmetry!

Dark Matter in the Universe

Astronomers say that most of the matter in the Universe is invisible Dark Matter

'Supersymmetric' particles ?

We shall look for them with the LHC

More Shistory

- 1974: No-renormalization theorems
 - Ferrara, Iliopoulos, Wess & Zumino
- 1976: Discovery of supergravity Freedman, van Nieuwenhuizen & Ferrara; Deser & Zumino
- 1979/1981: Relevance to hierarchy problem Maiani, Witten
- 1983: Source of astrophysical dark matter Goldberg; JE, Hagelin, Nanopoulos, Olive & Nanopoulos
- 1990: Superunification of gauge couplings JE, Kelley & Nanopoulos; Langacker & Luo
 1995: LEP data favour light Higgs boson

The Coleman-Mandula Catastrophe

- Known symmetry charges scalar: Q |SpinJ > = |SpinJ >and vector (Lorentz): $P_{\mu} P_{\mu}^{(1)} + P_{\mu}^{(2)} = P_{\mu}^{(3)} + P_{\mu}^{(4)}$
- Consider a tensor charge: $\Sigma_{\mu\nu}$ matrix elements: $\langle a|\Sigma_{\mu\nu}|a\rangle = \alpha P_{\mu}^{(a)}P_{\nu}^{(a)} + \beta g_{\mu\nu}$
- Charge conservation: $P^{(1)}_{\mu}P^{(1)}_{\nu} + P^{(2)}_{\mu}P^{(2)}_{\nu} = P^{(3)}_{\mu}P^{(3)}_{\nu} + P^{(4)}_{\mu}P^{(4)}_{\nu}$
- Only possible solution: $P_{\mu}^{(1)} = P_{\mu}^{(3)}$ or $P_{\mu}^{(4)}$
- No non-trivial scattering possible!
- Crucial assumption: $\langle a|Q_{\alpha}|a \rangle \neq 0$
- Not true in supersymmetry!

Spinorology

- 2-component Weyl spinors for massless fermions: left-handed Ψ_L ψ_{α} right-handed Ψ_R $\overline{\psi}^{\dot{\alpha}}$
- Conjugate of Ψ_{L} is Ψ_{R} , $(\psi_{\alpha})^{*} = \overline{\psi}_{\dot{\alpha}}$ and vice versa: $(\overline{\psi}^{\dot{\alpha}})^{*} = \psi^{\alpha}$
- Combine them to make 4-component Dirac spinor: $\Psi = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} = \begin{pmatrix} \psi_\alpha \\ \overline{\eta}^{\dot{\alpha}} \end{pmatrix}$

• Conjugate: $\Psi^c = C\overline{\Psi}^T = \left(\frac{\eta_{\alpha}}{\psi^{\dot{\alpha}}}\right) \quad C = i\gamma^0\gamma^2$

Supersymmetry Algebra

- Simply stated: Q|Boson > = |Fermion >Q|Fermion > = |Boson >
- Spinorial charges obey algebra:

 $[P^{\mu}, Q_{\alpha}] = 0 = [P^{\mu}, \bar{Q}^{\dot{\alpha}}]$ $\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\} = 2(\sigma_{\mu})_{\alpha\dot{\beta}}P^{\mu}$ $\{Q_{\alpha}, Q_{\beta}\} = \{\bar{Q}^{\dot{\alpha}}, \bar{Q}^{\dot{\beta}}\} = 0$

- Only possible symmetry of S-matrix that combines particles of different spins
- Supermultiplets: chiral (0, 1/2), vector (1/2, 1)

Simplest Supersymmetric Field Theory

• Free scalar boson and free spin-1/2 fermion:

 $S = \int d^4x \, \mathcal{L}_{scalaire} + \mathcal{L}_{fermion}$ $\mathcal{L}_{scalaire} = -\partial^{\mu}\phi \, \partial_{\mu}\phi^*$ $\mathcal{L}_{fermion} = -i\psi^{\dagger}\bar{\sigma}^{\mu} \, \partial_{\mu}\psi$

• Transform boson to fermion: $\delta \phi = \epsilon^{\alpha} \psi_{\alpha} \text{ et } \delta \phi^* = \bar{\epsilon}_{\dot{\alpha}} \bar{\psi}^{\dot{\alpha}}$

$$\Rightarrow \delta \mathcal{L}_{scalaire} = -\epsilon^{\alpha} \left(\partial^{\mu} \psi_{\alpha} \right) \partial_{\mu} \phi^* - \partial^{\mu} \phi \,\overline{\epsilon}_{\dot{\alpha}} \left(\partial_{\mu} \bar{\psi}^{\dot{\alpha}} \right)$$

- Fermion to boson: $\delta \psi_{\alpha} = i(\sigma^{\mu}\epsilon^{\dagger})_{\alpha} \partial_{\mu}\phi$ et $\delta \bar{\psi}^{\dot{\alpha}} = -i(\epsilon \sigma^{\mu})^{\dot{\alpha}} \partial_{\mu}\phi^{*}$
- Lagrangian changes by total derivative: action $A = \int d^4x L(x)$ invariant
- Supersymmetry: $QQ = P \phi \rightarrow \psi \rightarrow \partial \phi, \psi \rightarrow \partial \phi \rightarrow \partial \psi$

Supersymmetry with Interactions

- General form: $L = L_0 V(\phi^i, \phi^*_j) \frac{1}{2} M_{ij}(\phi, \phi^*) \bar{\psi}^{ci} \psi^j$ Variation includes: $\frac{\partial M}{\partial \phi^*} \psi^* \bar{\psi}^c \psi$ $\frac{\partial M_{ij}}{\partial \phi^k} \bar{E} \psi^k \bar{\psi}^{ci} \psi^j$
- Cannot cancel, so $M = M(\phi)$ symmetric $M_{ij} = \frac{\partial W}{\partial \phi^i \partial \phi^j}$
- Cancel variation in potential:

 $\frac{\partial V}{\partial \phi^i} \bar{E} \psi^I + (\text{Herm.Conj.}) \longrightarrow V = |\frac{\partial W}{\partial \phi^i}|^2$

Final form:

$$L = i\bar{\psi}_i\gamma_\mu\partial^\mu\psi^i + |\partial_\mu\phi^i|^2 - |\frac{\partial W}{\partial\phi^i}|^2 - \frac{1}{2}\frac{\partial^2 W}{\partial\phi^i\partial^j}\bar{\psi}^{ci}\partial\psi^j + (\text{Herm.Conj.})$$

Simple case:

$$W = \frac{\lambda}{3}\phi^3 + \frac{m}{2}\phi^2 \qquad L = i\bar{\psi}\gamma_\mu\partial^\mu\psi + |\partial_\mu\phi|^2 - |m\phi + \lambda\phi^2|^2 - m\bar{\psi}^c\psi - \lambda\phi\bar{\psi}^c\psi$$

More Supersymmetric Field Theories

- Gauge bosons + adjoint spin-1/2 fermions = supersymmetric gauge theory
- Effective potential fixed by Yukawa, gauge couplings: $V = g^2 \phi^2 \phi^{*2} + y^2 \phi^2 \phi^{*2}$

 \rightarrow prediction for Higgs mass

 $m_h < m_Z$ at tree level, loops $\delta m_h^2 \propto \frac{m_t^4}{m_W^2} \ln\left(\frac{m_{\tilde{t}}^2}{m_t^2}\right) + \dots$

• Graviton minimally coupled to spin-3/2 fermion = supergravity

Minimal Supersymmetric Extension of Standard Model (MSSM)

• Particles + spartners

$$\frac{1}{2} \\ 0 \end{pmatrix} e.g., \ \left(\begin{array}{c} \ell \ (lepton) \\ \tilde{\ell} \ (slepton) \end{array} \right) or \left(\begin{array}{c} q \ (quark) \\ \tilde{q} \ (squark) \end{array} \right) \left(\begin{array}{c} 1 \\ \frac{1}{2} \end{array} \right) \ e.g., \ \left(\begin{array}{c} \gamma \ (photon) \\ \tilde{\gamma} \ (photino) \end{array} \right) \ or \ \left(\begin{array}{c} g \ (gluon) \\ \tilde{g} \ (gluino) \end{array} \right) \right) \\ \end{array}$$

- 2 Higgs doublets, coupling μ , ratio of v.e.v.'s = tan β
- Unknown supersymmetry-breaking parameters: Scalar masses m₀, gaugino masses m_{1/2}, trilinear soft couplings A₂ bilinear soft coupling B₁₁
- Often assume universality:

Single m_0 , single $m_{1/2}$, single A_{λ} , B_{μ} : not string?

- Called constrained MSSM = CMSSM
- Minimal supergravity also predicts gravitino mass $m_{3/2} = m_0, B_{\mu} = A_{\lambda} - m_0$

Why 2 Higgs Doublets?

 Cancel anomalous Higgsino triangle diagrams

- Superpotential must be analytic function of superfields:
 - Cannot use QU^cH, QD^cH*
 - Must use QU^cH_u, QD^cH_d
- Two Higgs fields \rightarrow
 - Coupling between them: $\mu H_u H_d$
 - Two different vev's, ratio tan β

$$W = \frac{\lambda}{3}\phi^3 + \frac{m}{2}\phi^2$$

Non-Universal Scalar Masses

- Different sfermions with same quantum #s?
 e.g., d, s squarks?
 disfavoured by upper limits on flavourchanging neutral interactions
- Squarks with different #s, squarks and sleptons? disfavoured in various GUT models e.g., d_R = e_L, d_L = u_L = u_R = e_R in SU(5), all in SO(10)
 Non-universal susy-breaking masses for Higgses? No reason why not! NUHM

Renormalization of Susy Breaking Parameters

- After cancellation of quadratic divergences: renormalized logarithmically: gaugino masses: $d M_a/dt \sim \beta_a M_a$ scalar masses²: $\frac{\partial m_{0_i}^2}{\partial t} = \frac{1}{16\pi^2} [\lambda^2 (m_0^2 + A_\lambda^2) - g_a^2 M_a^2]$
- Assuming universal input parameters (CMSSM)
- Solutions at low energy scales Q: $M_{a}(Q) = (\alpha_{a} / \alpha_{GUT}) m_{1/2}$ $m_{0_{i}}^{2} = m_{0}^{2} + C_{i} m_{1/2}^{2}$
- Gluino heavier than photino, wino
- Squarks heavier than sleptons

Mass Renormalizations

- Assuming universality at the GUT scale
- Gaugino masses:

- $M_a = (\alpha_a / \alpha_{GUT}) m_{1/2}$, e.g., $\rightarrow M_2 / M_3 = \alpha_2 / \alpha_3$

- Squark and slepton masses:
 - Squark mass²: $m_0^2 + 6 m_{1/2}^2$
 - Left-handed slepton mass²: $m_0^2 + 0.5 m_{1/2}^2$
 - Right-handed slepton mass²: $m_0^2 + 0.15 m_{1/2}^2$
- Minimal flavour violation (MFV):
 - Flavour mixing of squarks and sleptons induced by CKM, neutrino mixing

Electroweak Symmetry Breaking

• Could be triggered by renormalization effects:

$$\frac{\partial m_{0_i}^2}{\partial t} = \frac{1}{16\pi^2} [\lambda^2 (m_0^2 + A_\lambda^2) - g_a^2 M_a^2]$$

• Driven by large Yukawa coupling of top quark:

$$\frac{m_W}{m_P} = exp(\frac{-\mathcal{O}(1)}{\alpha_t}): \quad \alpha_t \equiv \frac{\lambda_t^2}{4\pi}$$

- Higgs mass² \rightarrow negative
- Electroweak scale naturally $\sim 100 \text{ GeV}$ for $m_t \sim 60$ to 200 GeV

Lightest Supersymmetric Particle

Stable in many models because of conservation of R parity: $R = (-1)^{2S - L + 3B}$ where S = spin, L = lepton #, B = baryon #• Particles have R = +1, sparticles R = -1: Sparticles produced in pairs Heavier sparticles \rightarrow lighter sparticles Lightest supersymmetric particle (LSP) stable

Possible Nature of LSP

• No strong or electromagnetic interactions Otherwise would bind to matter Detectable as anomalous heavy nucleus Possible weakly-interacting scandidates **Sneutrino** (Excluded by LEP, direct searches) Lightest neutralino χ (partner of Z, H, γ) Gravitino (nightmare for detection)

Classic Supersymmetric Signature

