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Topics to be treated
Based on textbook The Primordial Density Perturbation (Cosmology, Inflation and the Origin of Structure),
DHL and A. R. Liddle (CUP 2009).
I’ll use units ~ = c = kB = 1 with temperature in eV or MeV.

Part I: What we know (observable universe after the first second)
1. The ΛCDM model.
2. The homogeneous universe:
(i) Hubble parameter and Friedmann Equation, (ii) Composition of the cosmic fluid, (iii) brief
history, (iii) The particle horizon and the horizon.

3. Departures from homogeneity (perturbations):
(i) Galaxy formation, (ii) Acoustic oscillation of the photon fluid, (iii) Primordial curvature
perturbation ζ(x), (iv) The Cosmic Microwave Background (CMB) anisotropy.

Part II: What probably happens at very early times
4. Inflation:
(i) it removes pre-existing inhomogeneity and drives Ω to 1, (ii) it generates scalar field
perturbations from their vacuum fluctuation.
5. A scalar field perturbation generates ζ.

and finally ... 6. Possible modifications of the ΛCDM model.
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The ΛCDM model: theory
• Observable universe at t >∼ 1 second described by ΛCDM model

• Theoretical ingredients mostly just
• General Relativity
• Electron-photon (Thomson) scattering
• Atomic physics (H and He)
• Three species of non-interacting neutrinos

• We also need, at t slightly less than 1 s (to fix the relative p/n and γ/ν abundances and to
fix the energy distribution of the photons and the neutrinos):
• QED for electron-positron annihilation and Fermi theory for neutrino interactions.

• All of this is pre Standard Model physics.
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The ΛCDM model: observation
(Simplest) ΛCDM model defined by five parameters, determined by observation:

H−1
0 ΩB Ωc Pζ n − 1

13.7 × 109years 0.046 0.23 (5 × 10−5)2 −0.04

• Most important observations so far
• Anisotropy of the Cosmic Microwave Background (CMB): presently outweighs all

others
• The (uneven) distribution of galaxies
• Properties of galaxies and galaxy clusters
• Primordial abundance of H and 4He (also D and 7Li)
• Galaxy redshifts versus distance, particularly from supernovas.
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Hubble parameter
• Observable universe is (almost) homogeneous and isotropically expanding.

• Distance between any two points ∝ scale factor a(t): set present value a0 = 1.

• Hubble parameter H(t) ≡ ȧ/a, Hubble time ≡ 1/H(t).

• Roughly, a ∝ t (gravity has small effect in one Hubble time)
• So age of universe is t ∼ H−1(t).

• Present age t0 = 13.7 × 109 yr. (Near exact equality to H−1
0 is coincidence.)

• General Relativity gives Friedmann equation:

H2(t) = (1/3M2
P)ρ(t) − K/a2(t), MP ≡ (8πG)−1/2 = 2 × 1018 GeV

• ρ is energy density
• K = 0 if space is flat (Euclidean geometry)

• Density parameter: Ω(t) ≡ ρ/3M2
PH2 = 1 + K/(aH)2 = 1 + K/ȧ2

• Note: |Ω(t) − 1| increases with time in the early universe because gravity makes
ä < 0.

• ΛCDM model assumes Ω = 1 corresponding to K = 0.
• Observation gives |Ω0 − 1| <∼ 10−2.
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The measured scale factor a(t)

Figure 1: Present value a0 = 1. The lines would be straight in

the absence of gravity. Figures courtesy of Mindaugas Karciauskas.
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Components of the cosmic fluid
• After t = 1 sec, just five components

• (1) ‘Baryonic’ matter (protons, neutrons and electrons).
• (2) Cold Dark Matter (CDM)

• CDM has negligible interaction and random motion till galaxy formation
· If CDM is axions it has negligible random motion even then
· Structure in axion CDM galaxy halos observable?

• (3) Photons
• (4) Neutrinos with negligible interaction
• (5) Cosmological constant ρΛ (dark energy)

• ρ(t) =
P

i ρi(t) = ρB(t) + ρc(t) + ργ(t) + ρν(t) + ρΛ

• PRESENT densities specified by contributions to Ω:
Ω0 = ΩB + Ωc + Ωγ + Ων + ΩΛ

Values deduced from observation using ΛCDM model with mν = 0:

(Ω0) ΩB Ωc Ωγ Ων ΩΛ

(1) 0.046 0.23 5.0 × 10−5 3.2 × 10−5 0.72
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Matter and radiation
What happens to the ρi(t) going back in time?

• The cosmological constant is time-independent.

• For baryonic matter and CDM, ρi is mass density, so ρi ∝ a−3.

• Photons and (massless) ν’s form a gas with particle speed v = 1

• Pressure Pi = ρi/3.
• Energy conservation dE = −PdV gives d(a3ρi) = −Pid(a3) hence ρi ∝ a−4

• Friedmann equation (with K = 0) can be written (taking mν = 0)

ρ(t) = ρΛ + ρB(t) + ρc(t) + ργ(t) + ρν(t)

= 3M2
PH2

0

ˆ

ΩΛ + (ΩB + Ωc)a
−3(t) + (Ωγ + Ων)a−4(t)

˜

= (2.36 × 10−4 eV)4 ×
ˆ

0.72 + 0.28a−3(t) + (8.2 × 10−5)a−4(t)
˜

Epoch Duration ρ(t) ' a(t) ∝ ä

Future 1 < a(t) ρΛ eHt > 0

Matter domination (3 × 10−4) <∼ a(t) <∼ 1 ρB + ρc t2/3 < 0

Radiation domination a(t) <∼ (3 × 10−4) ργ + ρν t1/2 < 0
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History

T t What happens

> 1 MeV (1 MeV/T )2 s In equilibrium: e, ē, γ, ν (their ρ dominates giving T -t relation)

In equilibrium: p and n giving ρn/ρp = exp[−T/(mn − mp)]

Not in equilibrium: Cold Dark Matter

1 MeV 1 s ē’s annihilate, ν’s decouple

10−1 MeV 100 s Big Bang Nucleosynthesis (BBN): n’s bind into (mostly) 4He

There’s now a plasma with frequent Thomson scattering.

0.8 eV 105 y Radiation domination gives way to matter domination

0.3 eV 105 y Photon decoupling: e’s bind into atoms

10−3 eV 108 y First galaxies appear

2 × 10−4 eV 1010 y Present epoch.

• As shown earlier, ργ ∝ a−4 after neutrino decoupling. But blackbody distribution gives
ργ ∝ T 4. Hence T ∝ 1/a after neutrino decoupling.
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Horizon
• Use ‘comoving’ coordinate x, such that any ‘comoving’ point (one moving with the

expansion) has constant x.
• Distance from the origin is r = a(t)x.

• Since the beginning at a ' 0, light travels a distance

rph(t) ≡ a(t)xph(t) ≡ a(t)

Z t

0

dt

a(t)

• Proof: move origin to position of the photon at some time t = t1.
At time t1 + dt photon distance from origin is a(t)[dt/a(t)] = dt.
Hence, instantaneous photon speed measured by observer at photon position is dt/dt = 1.
This is the definition of photon speed according to General Relativity.

• rph(t) is called the particle horizon
• rph = H−1(t)/2 (matter domination), rph = H−1(t) (radiation domination).

• Distance H−1(t) is called the horizon
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Horizon entry
• Region with size > (particle) horizon isn’t in causal contact.

• But any region has size ∝ a, and d(aH)/dt ≡ ä < 0 before the present.
• So any region is out of causal contact at early times

• Epoch when size = H−1(t) is called epoch of horizon entry

• Particle horizon at present is robs ≡ rph(t0) = 14, 000 Mpc = 4 × 1010, light years.
• This is the present size of the observable universe
• Not exactly equal to ct0 due to expansion.
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Formation of structure
• Present matter density is very inhomogeneous (clumped into galaxies).

• To explain this, early matter density must be slightly inhomogeneous.
• Matter falls into over-dense regions.
• Matter density contrast δm ≡ δρm/ρm grows. (ρm ≡ ρB + ρc)

• Galaxy-sized over-dense regions collapse to become galaxies.
• Bigger over-dense regions collapse later to become galaxy clusters
• Still bigger over-dense regions are still expanding

· They are ‘super-clusters’ and under-dense regions are ‘voids’.

• Given region must be inside horizon before matter can fall into it.
• Horizon entry is well after BBN for galaxy-sized regions.

• CDM has negligible interaction and random motion.
• Growth of δc begins promptly at horizon entry.

• But frequent e-γ collisions prevent growth of δB before photon decoupling.
• And random motion prevents any growth of δB in region enclosing mass <∼ 105M�.

• This explains why no galaxies have smaller mass.
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Defining cosmological perturbations
• First step is to define a fictitious ‘unperturbed’ universe that is perfectly homogeneous and

isotropic. It should closely resemble the actual universe but is otherwise arbitrary.

• Now lay down coordinates (x, t) in the actual universe. Take them to also describe the
unperturbed universe, with x the comoving coordinate. This defines a mapping, from each
point in the unperturbed universe to one in the actual universe.

• A perturbation δρ in (say) energy density ρ is now defined by

δρ(x, t) = ρ(x, t) − ρ(t),

where ρ(x, t) refers to the actual universe and ρ(t) to the unperturbed universe.

• Choice of coordinates is called a gauge. It should make the perturbations small but is
otherwise arbitrary. Physical results gauge-independent.

• Each gauge defines a slicing (fixed t) and threading (fixed x) of spacetime.
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Independent Fourier components
• Instead of δρ(x, t), it’s convenient to consider δρk(t) ≡

R

d3
xe−ik·xδρ(x, t)

• Physical wavenumber is k/a(t).

• Similarly for all other perturbations.

• To first order, perturbations with different k evolve independently — no coupling between
them.

• In particular, waves in the universe have fixed k, not fixed k/a(t): ie. wavelength expands
with the universe.

• According to ΛCDM (and much more generally) waves before structure formation are
standing not traveling.

• As we shall see, the CMB anisotropy sees a snapshot of the standing waves
in δγk at the epoch of photon decoupling.
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Acoustic oscillation
• BEFORE PHOTON DECOUPLING baryonic matter is ionized

• There’s a baryon-photon fluid with PBγ = ργ/3 and ρBγ = ργ + ρB ' ργ .

• Supports ‘sound’ waves with speed cs =
q

ṖBγ/ρ̇Bγ ∼
p

1/3

• δγ ≡ (δργ/ργ) = (4/3)(δρB/ρB) oscillates, with damping from photon diffusion

δγk(t) = Ak(t) + e−k2/k2

D
(t) [Bk(t) cos (kxs(t)) + Ck(t) sin (kxs(t))]

xs(t) ≡
Z t

0
cs(t)

dt

a(t)
check: a(t)dxs(t)] = csdt

• Note: this is the WKB approximation: Bk and Ck are proportional to 1/
√

cs.

• AT PHOTON DECOUPLING: xs = 150 Mpc, kD = (8 Mpc)−1

• AFTER PHOTON DECOUPLING:
• baryons fall into potential wells created by CDM
• Photons travel freely, seen now as the CMB.

• ργ(x, t) ∝ T 4(x, t) so δγ(x, t) = 4δT (x, t)/T (t)
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Primordial curvature perturbation ζ(x)
• What determines the density contrasts δB , δc, δγ and δν , present at T ∼ MeV?

• According to ΛCDM model, all are determined by curvature perturbation ζ(x)

• At T ∼ MeV, consider spacetime slicing of uniform total energy density ρ(t).

• Local expansion rate is in general inhomogeneous, a(x, t) = eζ(x)a(t).

• This defines ζ ≡ δ[ln a(x, t)].

• ζ(x) independent of t because all relevant scales are outside horizon:
• (i) no heat flows
• (ii) P depends only on ρ: P (x, t) = ρ(x, t)/3.

• Proof that ζ is independent of t: use dE = −PdV giving

d
`

a3(x, t)ρ(t)
´

dt
+ P (t)

d(a3(x, t))

dt
= 0

hence ρ̇(t) + 3 [ρ(t) + P (t)]

»

ȧ(t)

a(t)
+

dζ(x, t)

dt

–

= 0
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Initial density perturbations
• ΛCDM model assumes all ρi(t) are uniform on slicing of uniform ρ.

• Consider now a different spacetime slicing, of non-uniform ρ(x, t).

• Work to first order in δρ/ρ.

• Choose gauge whose threading has locally isotropic expansion, with the slicing orthogonal
to the threading (conformal Newtonian gauge).

• It an be shown that ∆a ≡ a(x, t)confnewt − a(x, t)uniformρ = ζ(x)/3.

• At T ∼ MeV causal processes ineffective, local evolution is

ρB ∝ ρc ∝ a−3(x, t), ργ ∝ ρν ∝ a−4(x, t)

• To first order, 1
3
δB = 1

3
δc = 1

4
δγ = 1

4
δν = −∆a

a
= − ζ

3

• So ζ indeed determines initial density perturbations, which are initially time-independent.

• Setting Ak(t) = 0 and imposing initial condition, we get at photon decoupling

δγk ' −4

3
ζke−k2/k2

D cos (kxs) , xs = 150 Mpc, kD = (8 Mpc)−1

We’ll see how this contributes to the CMB anisotropy.
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Spectrum of ζ

• ΛCDM model assumes ζk uncorrelated (‘gaussianity’)

• Using Fourier Series in box of size aL, define spectrum Pζ by

〈|ζk|2〉 = L3Pζ(k)

where 〈〉 is the average in a cell d3k (ensemble average).

• Taking again ensemble average we get

〈ζ2(x)〉 =
1

(2π3)

Z

d3kPζ(k)

This is independent of x (statistical homogeneity).
• Can regard 〈〉 here as spatial average (example of ergodic theorem).

• Taking L → ∞ we have

〈ζkζ∗
k′〉 = (2π)3δ3(k − k

′)Pζ(k)
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Observed spectrum and spectral index
• ΛCDM model assumes Pζ(k) depends only on magnitude k (statistical isotropy).

• Convenient to define Pζ(k) ≡ (k3/2π2)Pζ(k). Then
〈ζ2(x)〉 =

R ∞
0 d(ln k)Pζ(k).

• ΛCDM model assumes power law

Pζ(k) = Pζ(kpivot)(k/kpivot)
n−1

• Choose k−1
pivot = 5000 Mpc

• Observation gives n − 1 = −0.04 ± 0.015; spectrum is almost scale invariant!

• Value Pζ(kpivot) = (5 × 10−5)2

• This gives 〈ζ2(x)〉 ∼ (10−4)2
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The CMB anisotropy
• Photons coming from given direction have blackbody distribution.

• Average temperature T = 2.73K.

• There’s a dipole anisotropy due to our velocity v through CMB
• Observed in direction e, δT (e)/T = −v · e with |v| = 1.2 × 10−3.

• According to ΛCDM model, galaxies are on average at rest w.r.t. CMB
· Confirmed by observation

• We’re interested in the INTRINSIC ANISOTROPY
• δT (θ, φ)/T =

P∞
`=2 a`mY`m(θ, φ) <∼ 10−5

• According to ΛCDM, a`m uncorrelated (‘gaussian’)
• 〈a`ma∗

`′m′〉 = δ``′δmm′C` [note: C` = 〈|a`m|2〉]
• Form of RHS corresponds to statistical isotropy

• Expectation value 〈〉 is average over observer’s position.
• For high `, can approximate this as average over m at our location.
• Expected error ∆C` called cosmic variance. From gaussianity,

(∆C`)
2 ≡ 〈

`

|a`m|2 − C`

´2〉 = 2C2
` /(2` + 1)

• ΛCDM model predicts C` in terms of the five parameters.
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The CMB anisotropy

Figure 2: The intrinsic CMB anisotropy.
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Best fit to observed CMB anisotropy

Acoustic peaks

Damping tail

Sachs−Wolfe plateau

ISW rise

Figure 3: Error bars at ` <∼ 10 dominated by cosmic variance. PLANCK satellite now
flying will give practically zero error bars at 10 <∼ ` <∼ 2000. Curve is best fit of ΛCDM model to all
relevant data. Fit to CMB anisotropy alone gives a similar result.
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Peaks of CMB anisotropy
• At ` <∼ 10, δT/T comes mainly from Sachs-Wolfe effect. This is the perturbation in the

redshift, caused by the inhomogeneity of the matter density along the line of sight.

• Keeping only ` >∼ 10, the observed δT (e)/T is roughly equal to its value at the epoch of
last scattering. Let’s see how this gives the peak structure.

• Ignoring the motion of the cosmic fluid, δT/T ' δγ(xdec, tdec)/4, where xdec is position of
observed photons at decoupling.

• CMB originates on a sphere with radius close to robs = 14, 000 Mpc

• ` = krobs where k is typical wavenumber of δγk probed by ` th multipole
• (Property of Y`m, also reason for quantum mechanics ` = k×r)

• Using δγk ∼ − 4
3
ζke−k2/k2

D cos (kxs) we get

C` ∝ e−2(`/robskD)2 cos2(xs`/robs) ' e−(`/1200)2 cos2(π`/300)

robs = 14, 000 Mpc, xs = 150 Mpc, kD = (8 Mpc)−1

• This would give C` peaks at ` = 0, 300, 600, 900, 1200, 1500

• Peak at ` = 0 is actually absent, but other peaks in roughly the right place

• Exact calculation uses Boltzmann code for Thomson scattering, includes neutrinos.
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Inflation
What sets the initial condition of the observable universe?

The only good game in town is INFLATION.
Definition: an early era with ä > 0.

Starting with a Hubble-sized patch that’s roughly homogeneous and isotropically expanding,
inflation does the following:

(1) Generates an arbitrarily large patch that’s (practically) exactly homogeneous and isotropic at
the classical level, with Ω = 1 as required by observation.

(2) The vacuum fluctuations of light scalar fields become classical during inflation, and can
generate the observed curvature perturbation ζ(x).

*
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Inflation and the unperturbed universe
FLATNESS PROBLEM: WHY IS PRESENT DENSITY PARAMETER Ω0 so close to 1?

• As we saw, observation requires Ω = 1 <∼ 10−2 at the present epoch.

• Also, we saw that Ω(t) − 1 ∝ 1/(aH)2.

• Without inflation, |Ω(t) − 1| decreases continuosly going back in time.

• At T ∼ MeV, |Ω(t) − 1| <∼ 10−18. Far smaller initial value required if radiation domination
persists back to much earlier times.

• Inflation avoids this fine-tuning, if the observable universe starts out well inside the horizon.
• Indeed, aH then starts out well below its present value and we can have |Ω − 1| ∼ 1

initially.

AT CLASSICAL LEVEL, INFLATION CAN REMOVE PERTURBATIONS

• At least within General Relativity, a ‘no-hair’ theorem says that inflation removes all
inhomogeneity at the classical level (Wald 1983), within (say) the observable universe.
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Light field: classical evolution
Finally, we’re going to see how inflation can generate the curvature perturbation ζ(x).

To do this job, we need almost exponential inflation after the observable universe leaves the
horizon, ie. a ∝ exp(Ht) with H practically constant. First step is to see how such inflation
converts the vacuum fluctuation of any light field φ into a classical perturbation δφ(x).

• Light field definition: mass-squared |m2| � H2.

• In the expanding universe it satisfies

φ̈k(t) + 3H(t)φ̇k(t) +

"

„

k

a(t)

«2

+ m2

#

φk(t) = 0

• For now, let’s set m2 = 0 and take H exactly constant. Then solutions are

φk(t) = const e±ik/a(t)H

„

k

a(t)
± iH

«
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Quantized zero-mass field
• Promote φk to an operator

φ̂k(t) =
1

(2π)3

“

φk(t)a†
k

+ φ∗
k(t)a−k

”

[ak, ak′ ] = (2π)3δ3(k − k
′)

• Use Heisenberg picture so φ̂k(t) satisfies classical equation.
• Mode function φk(t) satisfies same equation.

• Choose solution

φk = −(2k3)−1/2eik/aH

„

k

a
+ iH

«

k

• Well before horizon exit (ie. when aH � k) we have over any interval ∆t � H,
φk ∝ e−i(k/a)t.

• Particle interpretation: a†
k

creates particles with momentum k/a.

• No particles exist during inflation, hence initial state is vacuum: âk|〉 = 0|〉.
• Note: state vector |〉 is time-independent.
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Quantum to classical transition
• Well after horizon exit, φk(t) = −i(2k3)−1/2H.

• This is purely imaginary giving φ̂k(t) = 1
(2π)3

φk(t) (ak − a−k). Suppose we now

measure φk, giving an eigenstate: φ̂k|φk〉 = φk|φk〉. At later times, same equation
holds. That means, we can regard measured φk(t) as a classical quantity.

• Before measurement of φk, vacuum expectation value of φ̂kφ̂†
k

is

〈φ̂kφ̂†
k′
〉 = (2π)3δ3(k − k

′)|φk|2 = (2π)3δ3(k − k
′)(2π2/k3)(H/2π)2

.

• After measurement, spectrum of the classical field defined by

〈φkφ∗
k′〉 = (2π)3δ3(k − k

′)(2π2/k3)Pφ(k)

where now 〈〉 is sum over a cell d3k.

• Interpretations of 〈〉 coincide because Fourier components within a cell are uncorrelated.

• Hence φk has flat spectrum: Pφ(k) = (k3/2π2)|φk|2 = (H/2π)2.
• Derived by Bunch and Davies before inflation proposed as physical reality.
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Spectrum of the curvature perturbation
• Given a field perturbation δφ(x), can generate a curvature perturbation ζ(x) by several

mechanisms.

• Original mechanism assumed the ‘slow-roll’ inflation model, involving an ‘inflaton’ field, and
identified this field with φ.

• Later proposals assume that φ is not the inflaton in a slow-roll model (and don’t even
assume such a model holds). I’ll call such a φ the ‘curvaton’.

• In any case, absence of causal processes will give a local relation: ζ(x) = f [φ(x)].

• To get a Gaussian ζ we need ζ(x) = Aφ(x), giving ζk = Aφk and Pζ(k) = A2(H/2π)2,

where H is evaluated during inflation and supposed to be time-independent.

• This makes spectral index n = 1 in contradiction with observation. But including
mass-squared, and slight time-dependence of H, get

n − 1 = (2m2/3H2) + 3Ḣ/H2 inflaton scenario

n − 1 = (2m2/3H2) + Ḣ/H2 curvaton scenario,

with rhs evaluated at horizon exit. Given a suitable model, this can fit observed value
n = 0.96, and constrains the model.
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Possible modifications of ΛCDM model
Small modifications obviously allowed by observation.
Here are some in my order of likelihood, with the magnitude needed for eventually detectability.

• Departure from Pζ(k) ∝ kn−1, ie. n(k) − 1 ≡ d lnPζ/d ln k = not constant.
• Running spectral index: |dn/d ln k| >∼ 10−3.

• Non-gaussianity of ζ: |fNL| >∼ 1.

• CDM has significant interaction and/or random motion.
• Cosmic ray positron excess??

• Cosmic strings: energy per unit length >∼ (1012 GeV)2.

• Matter isocurvature perturbation: Sm >∼ 10−2δm [Sm ≡ δm/3 − δγ/4 ].

• Tensor perturbation: r >∼ 10−3 (Planck will detect if r ∼ 0.1).

• Statistical anisotropy (from vector fields): >∼ 1%.

• Neutrino is socurvature perturbation: Sν >∼ 10−2 [Sν ≡ δν/4 − δγ/4].

• Time-dependent ρΛ (dark energy): ρ̇Λ/ρΛ ∼ 10−2.

• Nonzero spatial curvature: Ω0 ∼ 10−3.

• Statistical inhomogeneity.
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