

Two Lectures on Cosmology and the CMB

David H. Lyth

Cosmology and Astroparticle Physics Group Physics Department Lancaster University

Topics to be treated

LANCASTER

Based on textbook *The Primordial Density Perturbation (Cosmology, Inflation and the Origin of Structure)*, DHL and A. R. Liddle (CUP 2009).

I'll use units $\hbar = c = k_{\rm B} = 1$ with temperature in eV or MeV.

Part I: What we know (observable universe after the first second)

- 1. The ΛCDM model.
- 2. The homogeneous universe:

(i) Hubble parameter and Friedmann Equation, (ii) Composition of the cosmic fluid, (iii) brief history, (iii) The particle horizon and the horizon.

3. Departures from homogeneity (perturbations):

(i) Galaxy formation, (ii) Acoustic oscillation of the photon fluid, (iii) Primordial curvature perturbation $\zeta(\mathbf{x})$, (iv) The Cosmic Microwave Background (CMB) anisotropy.

Part II: What probably happens at very early times

4. Inflation:

(i) it removes pre-existing inhomogeneity and drives Ω to 1, (ii) it generates scalar field perturbations from their vacuum fluctuation.

5. A scalar field perturbation generates ζ .

and finally ... 6. Possible modifications of the Λ CDM model.

The Λ CDM model: theory

- Observable universe at $t \gtrsim 1$ second described by ΛCDM model
- Theoretical ingredients mostly just
 - General Relativity
 - Electron-photon (Thomson) scattering
 - Atomic physics (H and He)
 - Three species of non-interacting neutrinos
- We also need, at t slightly less than 1 s (to fix the relative p/n and γ/ν abundances and to fix the energy distribution of the photons and the neutrinos):
 - QED for electron-positron annihilation and Fermi theory for neutrino interactions.
- All of this is pre Standard Model physics.

The Λ CDM model: observation

(Simplest) Λ CDM model defined by five parameters, determined by observation:

 $\begin{array}{cccc} H_0^{-1} & \Omega_B & \Omega_c & \mathcal{P}_{\zeta} & n-1 \\ 13.7 \times 10^9 \text{years} & 0.046 & 0.23 & (5 \times 10^{-5})^2 & -0.04 \end{array}$

- Most important observations so far
 - Anisotropy of the Cosmic Microwave Background (CMB): presently outweighs all others
 - The (uneven) distribution of galaxies
 - Properties of galaxies and galaxy clusters
 - Primordial abundance of H and 4 He (also D and 7 Li)
 - Galaxy redshifts versus distance, particularly from supernovas.

Hubble parameter

- Observable universe is (almost) homogeneous and isotropically expanding.
- Distance between any two points \propto scale factor a(t): set present value $a_0 = 1$.
- Hubble parameter $H(t) \equiv \dot{a}/a$, Hubble time $\equiv 1/H(t)$.
- Roughly, $a \propto t$ (gravity has small effect in one Hubble time)
 - So age of universe is $t \sim H^{-1}(t)$.
 - Present age $t_0 = 13.7 \times 10^9$ yr. (Near exact equality to H_0^{-1} is coincidence.)
- General Relativity gives Friedmann equation:

$$H^{2}(t) = (1/3M_{\rm P}^{2})\rho(t) - K/a^{2}(t), \qquad M_{\rm P} \equiv (8\pi G)^{-1/2} = 2 \times 10^{18} \,{\rm GeV}$$

- ρ is energy density
- K = 0 if space is flat (Euclidean geometry)
- Density parameter: $\Omega(t) \equiv \rho/3M_{\rm P}^2H^2 = 1 + K/(aH)^2 = 1 + K/\dot{a}^2$
 - Note: $|\Omega(t) 1|$ increases with time in the early universe because gravity makes $\ddot{a} < 0$.
- Λ CDM model assumes $\Omega = 1$ corresponding to K = 0.
 - Observation gives $|\Omega_0 1| \lesssim 10^{-2}$.

The measured scale factor a(t)

Figure 1: Present value $a_0 = 1$. The lines would be straight in the absence of gravity. Figures courtesy of Mindaugas Karciauskas.

LANCASTE

Components of the cosmic fluid

- After t = 1 sec, just five components
 - (1) 'Baryonic' matter (protons, neutrons and electrons).
 - (2) Cold Dark Matter (CDM)
 - CDM has negligible interaction and random motion till galaxy formation
 - · If CDM is axions it has negligible random motion even then
 - · Structure in axion CDM galaxy halos observable?
 - (3) Photons
 - (4) Neutrinos with negligible interaction
 - (5) Cosmological constant ρ_{Λ} (dark energy)

•
$$\rho(t) = \sum_{i} \rho_{i}(t) = \rho_{B}(t) + \rho_{c}(t) + \rho_{\gamma}(t) + \rho_{\nu}(t) + \rho_{\Lambda}$$

• PRESENT densities specified by contributions to Ω : $\Omega_0 = \Omega_B + \Omega_c + \Omega_\gamma + \Omega_\nu + \Omega_\Lambda$

Values deduced from observation using Λ CDM model with $m_{\nu} = 0$:

(
$$\Omega_0$$
) Ω_B Ω_c Ω_γ Ω_ν Ω_Λ
(1) 0.046 0.23 5.0×10^{-5} 3.2×10^{-5} 0.72

Matter and radiation

What happens to the $\rho_i(t)$ going back in time?

- The cosmological constant is time-independent.
- For baryonic matter and CDM, ho_i is mass density, so $ho_i \propto a^{-3}$.
- Photons and (massless) ν 's form a gas with particle speed v = 1
 - Pressure $P_i = \rho_i/3$.
 - Energy conservation dE = -PdV gives $d(a^3\rho_i) = -P_i d(a^3)$ hence $\rho_i \propto a^{-4}$

• Friedmann equation (with K = 0) can be written (taking $m_{\nu} = 0$)

$$\begin{split} \rho(t) &= \rho_{\Lambda} + \rho_{B}(t) + \rho_{c}(t) + \rho_{\gamma}(t) + \rho_{\nu}(t) \\ &= 3M_{\rm P}^{2}H_{0}^{2}\left[\Omega_{\Lambda} + (\Omega_{B} + \Omega_{c})a^{-3}(t) + (\Omega_{\gamma} + \Omega_{\nu})a^{-4}(t)\right] \\ &= (2.36 \times 10^{-4} \,\mathrm{eV})^{4} \times \left[0.72 + 0.28a^{-3}(t) + (8.2 \times 10^{-5})a^{-4}(t)\right] \end{split}$$

Epoch	Duration	$\rho(t) \simeq$	$a(t) \propto$	ä
Future	1 < a(t)	$ ho_{\Lambda}$	e^{Ht}	> 0
Matter domination	$(3\times 10^{-4}) \lesssim a(t) \lesssim 1$	$ ho_B + ho_{ m c}$	$t^{2/3}$	< 0
Radiation domination	$a(t) \lesssim (3 \times 10^{-4})$	$\rho_{\gamma} + \rho_{\nu}$	$t^{1/2}$	< 0

History

T	t	What happens
$> 1\mathrm{MeV}$	$(1{\rm MeV}/T)^2{ m s}$	In equilibrium: e, $\bar{\mathrm{e}}$, γ , $ u$ (their $ ho$ dominates giving T - t relation)
		In equilibrium: p and n giving $ ho_n/ ho_p=\exp[-T/(m_n-m_p)]$
		Not in equilibrium: Cold Dark Matter
1 MeV	1 s	$ar{\mathrm{e}}$'s annihilate, $ u$'s decouple
$10^{-1}\mathrm{MeV}$	100 s	Big Bang Nucleosynthesis (BBN): n's bind into (mostly) 4 He
		There's now a plasma with frequent Thomson scattering.
0.8 eV	$10^5{ m y}$	Radiation domination gives way to matter domination
0.3 eV	$10^5{ m y}$	Photon decoupling: e's bind into atoms
$10^{-3}\mathrm{eV}$	10^8 y	First galaxies appear
$2 imes 10^{-4} \mathrm{eV}$	10^{10} y	Present epoch.

As shown earlier, $\rho_{\gamma} \propto a^{-4}$ after neutrino decoupling. But blackbody distribution gives $\rho_{\gamma} \propto T^4$. Hence $T \propto 1/a$ after neutrino decoupling.

Horizon

- Distance from the origin is $\mathbf{r} = a(t)\mathbf{x}$.
- Since the beginning at $a \simeq 0$, light travels a distance

$$r_{\rm ph}(t) \equiv a(t)x_{\rm ph}(t) \equiv a(t)\int_0^t \frac{dt}{a(t)}$$

- Proof: move origin to position of the photon at some time $t = t_1$. At time $t_1 + dt$ photon distance from origin is a(t)[dt/a(t)] = dt. Hence, instantaneous photon speed measured by observer at photon position is dt/dt = 1. This is the definition of photon speed according to General Relativity.
- $r_{\rm ph}(t)$ is called the *particle horizon*
 - $r_{\rm ph} = H^{-1}(t)/2$ (matter domination), $r_{\rm ph} = H^{-1}(t)$ (radiation domination).

Distance $H^{-1}(t)$ is called the *horizon*

Horizon entry

- Region with size > (particle) horizon isn't in causal contact.
- But any region has size $\propto a$, and $d(aH)/dt \equiv \ddot{a} < 0$ before the present.
 - So *any* region is out of causal contact at early times
 - Epoch when size $= H^{-1}(t)$ is called *epoch of horizon entry*
- Particle horizon at present is $r_{obs} \equiv r_{ph}(t_0) = 14,000 \text{ Mpc} = 4 \times 10^{10}$, light years.
 - This is the present size of the observable universe
 - Not exactly equal to ct_0 due to expansion.

Formation of structure

- Present matter density is very inhomogeneous (clumped into galaxies).
- To explain this, early matter density must be *slightly* inhomogeneous.
 - Matter falls into over-dense regions.
 - Matter density contrast $\delta_{\rm m} \equiv \delta \rho_{\rm m} / \rho_{\rm m}$ grows. $(\rho_{\rm m} \equiv \rho_B + \rho_{\rm c})$
 - Galaxy-sized over-dense regions collapse to become galaxies.
 - Bigger over-dense regions collapse later to become galaxy clusters
 - Still bigger over-dense regions are still expanding
 - · They are 'super-clusters' and under-dense regions are 'voids'.
- Given region must be *inside horizon* before matter can fall into it.
 - Horizon entry is well *after* BBN for galaxy-sized regions.
- CDM has negligible interaction and random motion.
 - Growth of $\delta_{\rm c}$ begins promptly at horizon entry.
- But frequent e- γ collisions prevent growth of δ_B before photon decoupling.
 - And random motion prevents any growth of δ_B in region enclosing mass $\leq 10^5 M_{\odot}$.
 - This explains why no galaxies have smaller mass.

Defining cosmological perturbations

- First step is to define a fictitious 'unperturbed' universe that is perfectly homogeneous and isotropic. It should closely resemble the actual universe but is otherwise arbitrary.
- Now lay down coordinates (x, t) in the actual universe. Take them to also describe the unperturbed universe, with x the comoving coordinate. This defines a mapping, from each point in the unperturbed universe to one in the actual universe.
- A perturbation $\delta \rho$ in (say) energy density ρ is now defined by

$$\delta\rho(\mathbf{x},t) = \rho(\mathbf{x},t) - \rho(t),$$

where $\rho(\mathbf{x}, t)$ refers to the actual universe and $\rho(t)$ to the unperturbed universe.

- Choice of coordinates is called a *gauge*. It should make the perturbations small but is otherwise arbitrary. Physical results gauge-independent.
- Each gauge defines a *slicing* (fixed t) and *threading* (fixed x) of spacetime.

LANCASTE

Independent Fourier components

- Instead of $\delta \rho(\mathbf{x}, t)$, it's convenient to consider $\delta \rho_{\mathbf{k}}(t) \equiv \int d^3 \mathbf{x} e^{-i\mathbf{k}\cdot\mathbf{x}} \delta \rho(\mathbf{x}, t)$
 - Physical wavenumber is k/a(t).
- Similarly for all other perturbations.
- To first order, perturbations with different k evolve independently no coupling between them.
- In particular, waves in the universe have fixed \mathbf{k} , not fixed $\mathbf{k}/a(t)$: ie. wavelength expands with the universe.
- According to ΛCDM (and much more generally) waves before structure formation are standing not traveling.
- As we shall see, the CMB anisotropy sees a snapshot of the standing waves in $\delta_{\gamma \mathbf{k}}$ at the epoch of photon decoupling.

Acoustic oscillation

- BEFORE PHOTON DECOUPLING baryonic matter is ionized
 - There's a *baryon-photon fluid* with $P_{B\gamma} = \rho_{\gamma}/3$ and $\rho_{B\gamma} = \rho_{\gamma} + \rho_B \simeq \rho_{\gamma}$.
 - Supports 'sound' waves with speed $c_{
 m s}=\sqrt{\dot{P}_{B\gamma}/\dot{
 ho}_{B\gamma}}\sim\sqrt{1/3}$

• $\delta_{\gamma} \equiv (\delta \rho_{\gamma} / \rho_{\gamma}) = (4/3)(\delta \rho_B / \rho_B)$ oscillates, with damping from photon diffusion

$$\delta_{\gamma \mathbf{k}}(t) = A_{\mathbf{k}}(t) + e^{-k^2/k_{\rm D}^2(t)} \left[B_{\mathbf{k}}(t) \cos\left(kx_{\rm s}(t)\right) + C_{\mathbf{k}}(t) \sin\left(kx_{\rm s}(t)\right) \right]$$

$$x_{\rm s}(t) \equiv \int_0^t c_{\rm s}(t) \frac{dt}{a(t)}$$
 check: $a(t)dx_{\rm s}(t)] = c_{\rm s}dt$

Note: this is the WKB approximation: $B_{\mathbf{k}}$ and $C_{\mathbf{k}}$ are proportional to $1/\sqrt{c_{s}}$.

- AT PHOTON DECOUPLING: $x_{\rm s} = 150 \,{\rm Mpc}, \qquad k_{\rm D} = (8 \,{\rm Mpc})^{-1}$
- AFTER PHOTON DECOUPLING:
 - baryons fall into potential wells created by CDM
 - Photons travel freely, seen now as the CMB.
 - $\rho_{\gamma}(\mathbf{x},t) \propto T^4(\mathbf{x},t)$ so $\delta_{\gamma}(\mathbf{x},t) = 4\delta T(\mathbf{x},t)/T(t)$

Primordial curvature perturbation $\zeta(\mathbf{x})$

- What determines the density contrasts δ_B , δ_c , δ_γ and δ_ν , present at $T \sim MeV$?
- According to Λ CDM model, all are determined by *curvature perturbation* $\zeta(\mathbf{x})$
- At $T \sim MeV$, consider spacetime slicing of uniform total energy density $\rho(t)$.
- Local expansion rate is in general inhomogeneous, $a(\mathbf{x}, t) = e^{\zeta(\mathbf{x})}a(t)$.
- This defines $\zeta \equiv \delta[\ln a(\mathbf{x}, t)]$.
- $\zeta(\mathbf{x})$ independent of t because all relevant scales are outside horizon:
 - (i) no heat flows
 - (ii) P depends only on ρ : $P(\mathbf{x}, t) = \rho(\mathbf{x}, t)/3$.
- Proof that ζ is independent of t: use dE = -PdV giving

$$\frac{d\left(a^{3}(\mathbf{x},t)\rho(t)\right)}{dt} + P(t)\frac{d(a^{3}(\mathbf{x},t))}{dt} = 0$$

hence $\dot{\rho}(t) + 3\left[\rho(t) + P(t)\right]\left[\frac{\dot{a}(t)}{a(t)} + \frac{d\zeta(\mathbf{x},t)}{dt}\right] = 0$

Initial density perturbations

- ACDM model assumes all $\rho_i(t)$ are uniform on slicing of uniform ρ .
- Consider now a different spacetime slicing, of *non-uniform* $\rho(\mathbf{x}, t)$.
- Work to first order in $\delta \rho / \rho$.
- Choose gauge whose threading has locally isotropic expansion, with the slicing orthogonal to the threading (conformal Newtonian gauge).
- It an be shown that $\Delta a \equiv a(\mathbf{x}, t)_{\text{confnewt}} a(\mathbf{x}, t)_{\text{uniform}\rho} = \zeta(\mathbf{x})/3.$
- At $T \sim MeV$ causal processes ineffective, local evolution is

$$\rho_B \propto \rho_c \propto a^{-3}(\mathbf{x}, t), \qquad \rho_\gamma \propto \rho_\nu \propto a^{-4}(\mathbf{x}, t)$$

- To first order, $\frac{1}{3}\delta_B = \frac{1}{3}\delta_c = \frac{1}{4}\delta_\gamma = \frac{1}{4}\delta_\nu = -\frac{\Delta a}{a} = -\frac{\zeta}{3}$
- So ζ indeed determines initial density perturbations, which are initially time-independent.
- Setting $A_{\mathbf{k}}(t) = 0$ and imposing initial condition, we get at photon decoupling

$$\delta_{\gamma \mathbf{k}} \simeq -\frac{4}{3} \zeta_{\mathbf{k}} e^{-k^2/k_{\mathrm{D}}^2} \cos(kx_{\mathrm{s}}), \qquad x_{\mathrm{s}} = 150 \,\mathrm{Mpc}, \qquad k_{\mathrm{D}} = (8 \,\mathrm{Mpc})^{-1}$$

We'll see how this contributes to the CMB anisotropy.

Spectrum of ζ

- Λ CDM model assumes $\zeta_{\mathbf{k}}$ uncorrelated ('gaussianity')
- Using Fourier Series in box of size aL, define spectrum P_{ζ} by

$$\langle |\zeta_{\mathbf{k}}|^2 \rangle = L^3 P_{\zeta}(\mathbf{k})$$

where $\langle \rangle$ is the average in a cell d^3k (ensemble average).

Taking again ensemble average we get

$$\langle \zeta^2(\mathbf{x}) \rangle = \frac{1}{(2\pi^3)} \int d^3k P_{\zeta}(\mathbf{k})$$

This is independent of \mathbf{x} (statistical homogeneity).

- Can regard $\langle \rangle$ here as spatial average (example of ergodic theorem).
- Taking $L \to \infty$ we have

$$\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'}^* \rangle = (2\pi)^3 \delta^3 (\mathbf{k} - \mathbf{k}') P_{\zeta}(\mathbf{k})$$

Observed spectrum and spectral index

- Λ CDM model assumes $P_{\zeta}(\mathbf{k})$ depends only on magnitude k (statistical isotropy).
- Convenient to define $\mathcal{P}_{\zeta}(k) \equiv (k^3/2\pi^2)P_{\zeta}(k)$. Then $\langle \zeta^2(\mathbf{x}) \rangle = \int_0^\infty d(\ln k)\mathcal{P}_{\zeta}(k)$.
- Λ CDM model assumes power law

$$\mathcal{P}_{\zeta}(k) = \mathcal{P}_{\zeta}(k_{\text{pivot}})(k/k_{\text{pivot}})^{n-1}$$

• Choose $k_{\text{pivot}}^{-1} = 5000 \,\text{Mpc}$

- Observation gives $n 1 = -0.04 \pm 0.015$; spectrum is almost scale invariant!
- Value $\mathcal{P}_{\zeta}(k_{\mathrm{pivot}}) = (5 \times 10^{-5})^2$
- This gives $\langle \zeta^2({f x}) \rangle \sim (10^{-4})^2$

The CMB anisotropy

- Photons coming from given direction have blackbody distribution.
 - Average temperature T = 2.73K.
- There's a dipole anisotropy due to our velocity \mathbf{v} through CMB
 - Observed in direction e, $\delta T(\mathbf{e})/T = -\mathbf{v} \cdot \mathbf{e}$ with $|v| = 1.2 \times 10^{-3}$.
 - According to Λ CDM model, galaxies are on average at rest w.r.t. CMB
 - · Confirmed by observation
- We're interested in the INTRINSIC ANISOTROPY
 - $\delta T(\theta,\phi)/T = \sum_{\ell=2}^{\infty} a_{\ell m} Y_{\ell m}(\theta,\phi) \lesssim 10^{-5}$
- According to ΛCDM , $a_{\ell m}$ uncorrelated ('gaussian')
 - $\langle a_{\ell m} a^*_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$ [note: $C_{\ell} = \langle |a_{\ell m}|^2 \rangle$]
 - Form of RHS corresponds to statistical isotropy
- Expectation value $\langle \rangle$ is average over observer's position.
 - For high ℓ , can approximate this as average over m at our location.
 - Expected error ΔC_{ℓ} called *cosmic variance*. From gaussianity,

$$(\Delta C_{\ell})^2 \equiv \langle \left(|a_{\ell m}|^2 - C_{\ell} \right)^2 \rangle = 2C_{\ell}^2 / (2\ell + 1)$$

The CMB anisotropy

Figure 2: The intrinsic CMB anisotropy.

Best fit to observed CMB anisotropy

Figure 3: Error bars at $\ell \leq 10$ dominated by cosmic variance. PLANCK satellite now flying will give practically zero error bars at $10 \leq \ell \leq 2000$. Curve is best fit of Λ CDM model to all relevant data. Fit to CMB anisotropy alone gives a similar result.

Peaks of CMB anisotropy

- At $\ell \leq 10$, $\delta T/T$ comes mainly from *Sachs-Wolfe effect*. This is the perturbation in the redshift, caused by the inhomogeneity of the matter density along the line of sight.
- Keeping only $\ell \gtrsim 10$, the observed $\delta T(\mathbf{e})/T$ is roughly equal to its value at the epoch of last scattering. Let's see how this gives the peak structure.
- Ignoring the motion of the cosmic fluid, $\delta T/T \simeq \delta_{\gamma}(\mathbf{x}_{dec}, t_{dec})/4$, where \mathbf{x}_{dec} is position of observed photons at decoupling.
- CMB originates on a sphere with radius close to $r_{\rm obs} = 14,000 \, {\rm Mpc}$
- $\ell = kr_{obs}$ where k is typical wavenumber of $\delta_{\gamma \mathbf{k}}$ probed by ℓ th multipole
 - Property of $Y_{\ell m}$, also reason for quantum mechanics $\ell = \mathbf{k} \times \mathbf{r}$)

• Using
$$\delta_{\gamma \mathbf{k}} \sim -\frac{4}{3} \zeta_{\mathbf{k}} e^{-k^2/k_{\mathrm{D}}^2} \cos\left(kx_{\mathrm{s}}\right)$$
 we get

$$C_{\ell} \propto e^{-2(\ell/r_{\rm obs}k_{\rm D})^2} \cos^2(x_{\rm s}\ell/r_{\rm obs}) \simeq e^{-(\ell/1200)^2} \cos^2(\pi\ell/300)$$

 $r_{\rm obs} = 14,000 \,{\rm Mpc}, \qquad x_{\rm s} = 150 \,{\rm Mpc}, \qquad k_{\rm D} = (8 \,{\rm Mpc})^{-1}$

- This would give C_{ℓ} peaks at $\ell = 0, 300, 600, 900, 1200, 1500$
 - Peak at $\ell = 0$ is actually absent, but other peaks in roughly the right place
- Exact calculation uses Boltzmann code for Thomson scattering, includes neutrinos.

Inflation

*

What sets the initial condition of the observable universe?

The only good game in town is INFLATION. Definition: an *early* era with $\ddot{a} > 0$.

Starting with a *Hubble-sized* patch that's *roughly* homogeneous and isotropically expanding, inflation does the following:

(1) Generates an *arbitrarily large* patch that's (practically) *exactly* homogeneous and isotropic at the classical level, with $\Omega = 1$ as required by observation.

(2) The vacuum fluctuations of light scalar fields become classical during inflation, and can generate the observed curvature perturbation $\zeta(\mathbf{x})$.

Inflation and the unperturbed universe

FLATNESS PROBLEM: WHY IS PRESENT DENSITY PARAMETER Ω_0 so close to 1?

- As we saw, observation requires $\Omega = 1 \leq 10^{-2}$ at the present epoch.
- Also, we saw that $\Omega(t) 1 \propto 1/(aH)^2$.
- Without inflation, $|\Omega(t) 1|$ decreases continuosly going back in time.
- At $T \sim \text{MeV}$, $|\Omega(t) 1| \leq 10^{-18}$. Far smaller initial value required if radiation domination persists back to much earlier times.
- Inflation avoids this fine-tuning, if the observable universe starts out well inside the horizon.
 - Indeed, aH then starts out well below its present value and we can have $|\Omega 1| \sim 1$ initially.

AT CLASSICAL LEVEL, INFLATION CAN REMOVE PERTURBATIONS

• At least within General Relativity, a 'no-hair' theorem says that inflation removes all inhomogeneity at the classical level (Wald 1983), within (say) the observable universe.

Light field: classical evolution

Finally, we're going to see how inflation can generate the curvature perturbation $\zeta(\mathbf{x})$.

To do this job, we need *almost exponential inflation* after the observable universe leaves the horizon, ie. $a \propto \exp(Ht)$ with *H* practically constant. First step is to see how such inflation converts the vacuum fluctuation of any light field ϕ into a classical perturbation $\delta \phi(\mathbf{x})$.

- Light field definition: mass-squared $|m^2| \ll H^2$.
- In the expanding universe it satisfies

$$\ddot{\phi}_{\mathbf{k}}(t) + 3H(t)\dot{\phi}_{\mathbf{k}}(t) + \left[\left(\frac{k}{a(t)}\right)^2 + m^2\right]\phi_{\mathbf{k}}(t) = 0$$

• For now, let's set $m^2 = 0$ and take H exactly constant. Then solutions are

$$\phi_{\mathbf{k}}(t) = \operatorname{const} e^{\pm ik/a(t)H} \left(\frac{k}{a(t)} \pm iH\right)$$

Quantized zero-mass field

Promote $\phi_{\mathbf{k}}$ to an operator

$$\hat{\phi}_{\mathbf{k}}(t) = \frac{1}{(2\pi)^3} \left(\phi_k(t) a_{\mathbf{k}}^{\dagger} + \phi_k^*(t) a_{-\mathbf{k}} \right)$$
$$[a_{\mathbf{k}}, a_{\mathbf{k}'}] = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}')$$

- Use Heisenberg picture so $\hat{\phi}_{\mathbf{k}}(t)$ satisfies classical equation.
 - Mode function $\phi_k(t)$ satisfies same equation.
- Choose solution

$$\phi_k = -(2k^3)^{-1/2}e^{ik/aH}\left(\frac{k}{a} + iH\right)k$$

- Well before horizon exit (ie. when $aH \ll k$) we have over any interval $\Delta t \ll H$, $\phi_k \propto e^{-i(k/a)t}$.
- Particle interpretation: $a_{\mathbf{k}}^{\dagger}$ creates particles with momentum \mathbf{k}/a .
- No particles exist during inflation, hence initial state is vacuum: $\hat{a}_{\mathbf{k}}|\rangle = 0|\rangle$.
 - Note: state *vector* $|\rangle$ is time-independent.

Quantum to classical transition

LANCASTER

- Well after horizon exit, $\phi_k(t) = -i(2k^3)^{-1/2}H$.
 - This is purely imaginary giving $\hat{\phi}_{\mathbf{k}}(t) = \frac{1}{(2\pi)^3} \phi_k(t) (a_{\mathbf{k}} a_{-\mathbf{k}})$. Suppose we now measure $\phi_{\mathbf{k}}$, giving an eigenstate: $\hat{\phi}_{\mathbf{k}} | \phi_{\mathbf{k}} \rangle = \phi_{\mathbf{k}} | \phi_{\mathbf{k}} \rangle$. At later times, *same* equation holds. That means, we can regard measured $\phi_{\mathbf{k}}(t)$ as a classical quantity.
- Before measurement of $\phi_{f k}$, vacuum expectation value of $\hat{\phi}_{f k} \hat{\phi}_{f k}^{\dagger}$ is

$$\langle \hat{\phi}_{\mathbf{k}} \hat{\phi}_{\mathbf{k}'}^{\dagger} \rangle = (2\pi)^3 \delta^3 (\mathbf{k} - \mathbf{k}') |\phi_k|^2 = (2\pi)^3 \delta^3 (\mathbf{k} - \mathbf{k}') (2\pi^2/k^3) (H/2\pi)^2$$

• After measurement, spectrum of the classical field defined by

$$\langle \phi_{\mathbf{k}} \phi_{\mathbf{k}'}^* \rangle = (2\pi)^3 \delta^3 (\mathbf{k} - \mathbf{k}') (2\pi^2/k^3) \mathcal{P}_{\phi}(k)$$

where now $\langle \rangle$ is sum over a cell d^3k .

- Interpretations of $\langle \rangle$ coincide because Fourier components within a cell are uncorrelated.
- Hence $\phi_{\mathbf{k}}$ has *flat* spectrum: $\mathcal{P}_{\phi}(k) = (k^3/2\pi^2) |\phi_k|^2 = (H/2\pi)^2$.
 - Derived by Bunch and Davies before inflation proposed as physical reality.

Spectrum of the curvature perturbation

- Given a field perturbation $\delta \phi(\mathbf{x})$, can generate a curvature perturbation $\zeta(\mathbf{x})$ by several mechanisms.
- Original mechanism assumed the 'slow-roll' inflation model, involving an 'inflaton' field, and identified this field with ϕ .
- Later proposals assume that ϕ is *not* the inflaton in a slow-roll model (and don't even assume such a model holds). I'll call such a ϕ the 'curvaton'.
- In any case, absence of causal processes will give a local relation: $\zeta(\mathbf{x}) = f[\phi(\mathbf{x})]$.
- To get a Gaussian ζ we need $\zeta(\mathbf{x}) = A\phi(\mathbf{x})$, giving $\zeta_{\mathbf{k}} = A\phi_{\mathbf{k}}$ and $\mathcal{P}_{\zeta}(k) = A^2(H/2\pi)^2$, where *H* is evaluated during inflation and supposed to be time-independent.
- This makes spectral index n = 1 in contradiction with observation. But including mass-squared, and slight time-dependence of H, get

 $n-1 = (2m^2/3H^2) + 3\dot{H}/H^2$ inflaton scenario $n-1 = (2m^2/3H^2) + \dot{H}/H^2$ curvaton scenario,

with rhs evaluated at horizon exit. Given a suitable model, this can fit observed value n = 0.96, and constrains the model.

LANCASTER

Possible modifications of ACDM model

LANCASTER

Small modifications obviously allowed by observation.

Here are some in my order of likelihood, with the magnitude needed for eventually detectability.

- Departure from $\mathcal{P}_{\zeta}(k) \propto k^{n-1}$, ie. $n(k) 1 \equiv d \ln \mathcal{P}_{\zeta}/d \ln k$ = not constant.
 - Running spectral index: $|dn/d\ln k| \gtrsim 10^{-3}$.
- Non-gaussianity of ζ : $|f_{\rm NL}| \gtrsim 1$.
- CDM has significant interaction and/or random motion.
 - Cosmic ray positron excess??
- Cosmic strings: energy per unit length $\geq (10^{12} \text{ GeV})^2$.
- Matter isocurvature perturbation: $S_{\rm m} \gtrsim 10^{-2} \delta_{\rm m}$ [$S_{\rm m} \equiv \delta_{\rm m}/3 \delta_{\gamma}/4$].
- Tensor perturbation: $r \gtrsim 10^{-3}$ (Planck will detect if $r \sim 0.1$).
- Statistical anisotropy (from vector fields): $\gtrsim 1\%$.
- Neutrino is socurvature perturbation: $S_{\nu} \gtrsim 10^{-2} [S_{\nu} \equiv \delta_{\nu}/4 \delta_{\gamma}/4].$
- Time-dependent ho_{Λ} (dark energy): $\dot{
 ho}_{\Lambda}/
 ho_{\Lambda} \sim 10^{-2}$.
- Nonzero spatial curvature: $\Omega_0 \sim 10^{-3}$.
- Statistical inhomogeneity.