Physics implications of the proposed baseline

Gudrid Moortgat-Pick (University of Hamburg) 29/10/09

- Physics impact from LHC results
- Physics issues at 250 position
- Conclusions

Just at the start of LHC ...

- ILC decision foreseen to be close after first interpreted LHC results
 - Impact of possible LHC outcome should be incorporated in design discussions
- Hints for Higgs or new physics scenarios
 - Currently only based on fits of electroweak precision observables
- Personal remark: flexibility needed for ILC design difficult wrt cost estimates

- what might be the LHC outcome?

Workshop LHC2FC@CERN 2/09

Questions from early LHC data ($\sim 10 \, \text{fb}^{-1}$)

- Three cases studied:
 - LHC not detected anything
 - LHC only detected SM-like Higgs
 - LHC detected some new physics
- What could the LC do
 - in first ILC stage of 90 up to 500 GeV?
 - in LC upgrades?
 - in multi-TeV CLIC option?

Input from (early) LHC possible?

On possible design features:

- energy scale(s) of a LC
- running scenarios (when GigaZ? # of steps in scans?)
- e⁺ polarization degree (45% ,60%,?)
- options (e⁻g, gg, e⁻e⁻,high lumi GigaZ)
- detector concepts ?
 - impact on physics? On # of lumi data? bb,cc?..

Nothing found at (early) LHC

- Interpretation for ILC?
 - 'Top' physics
 - indirect searches in bb, cc, II (large ED, Cl)
 - ew precision runs from Z-pole data
- But is then really 500 GeV as first ILC stage needed?
 - or better 350 GeV? High-lumi Z-factory?

Why 'top' physics?

Current average:

- Expectations at the LHC:
 - $\Delta m_{top} \sim 1 \text{ GeV}$
 - Yukawa couplings ~ 20 % (with slight model assumptions)
- Expectations at the ILC:
 - Mass via threshold scans: m_{top}~100 MeV (theory dominant)
 - Yukawa couplings via t t H : difficult due to small rates, but < 20%</p>
 - Unique access to electroweak couplings
- Why are top properties so important?
 - m_{top} is dominant uncertainty for elw. precision observables
 - ILC precision mandatory already now to exploit theory at quantum level!

Importance of 'top' mass

Top mass is important input parameter for electroweak precision tests

- SM prediction for m_W and $sin^2 \theta_{eff}$: consistency checks, sensitivity to m_{Higgs}
- compare m_W and $sin^2 \theta_{eff}$: experimental accuracy with theoretical prediction
- Theoretical uncertainties

1. unknown higher orders: $\Delta \sin^2 \theta_{eff}^{ho} \sim 5 \times 10^{-5}$, $\Delta m_W^{ho} \sim 4 \text{ MeV}$

High precision of top mass mandatory to exploit theory at quantum level!

lf	∆m _{top} ~1 GeV (LHC):	$\Delta \sin^2 e_{ff}^{input} \sim 3 \times 10^{-5}$, $\Delta m_W^{input} \sim 6 MeV$
lf	Δm_{top} ~0.1 GeV (ILC):	$\Delta \sin^2 {}_{eff}{}^{input}$ ~ 0.3 x 10 ⁻⁵ , $\Delta m_W{}^{input}$ ~ 1 MeV

Only SM-like Higgs at early LHC

- Interpretation for ILC
 - best-suited for studying Higgs properties
 - precise determination of couplings:

determination of Hbb is crucial!

- distinction: SM- versus SUSY Higgs
- t t H and trilinear Higgs couplings challenging
- But is then really 500 GeV as 1st step needed?
 - Optimize running scenarios (tunable energy, polarization to separate channels / background)

Important Higgs 'energy steps'

- First mass measurements done at 500 GeV: $\Delta mH \sim 0.04\%$
- For a light Higgs: e+e- -> ZH important
- Threshold scans
 - for best mass resolution
 - spin and CP-properties
- Branching ratios, couplings:
 - about threshold (mZ+mH)+50 GeV (~σ maximal)
- Successful studies done at the top threshold

Something 'new' detected at early LHC

- SUSY-like signals
 - At least partial spectrum accessible at ILC
 - Many new parameters (105)
 - Reveal new sources of CP-violation
- Extra gauge bosons and/or large extra dimensions
 - High precision in indirect searches allow model distinction and couplings determination
- Which running scenarios and design issues?

Where do we expect SUSY?

•Fits of electroweak precision observables in concordance with all experimental bounds

Positron Source@Durham 10/09

11

Features required for LC physics

- High statistics needed
 - L = 2 x 10³⁴ cm⁻² s⁻¹
- Clean experimental environment
 - low beamstrahlung (Υ_{ave}=0.048)
 - precise *luminosity* (ΔL<10⁻³) and energy (Δsqrt(s)<200 ppm) measurement
- Excellent detector resolution
 - b-, c-tagging (even the charge if needed)
 - т-polarization
 - $-4\pi \epsilon$ angle coverage
 - exloitation of angular distributions, BR's, T's

Needed features, cont.

• Threshold scans

- Tuneable energy allows to vary energy around the mass threshold of new particles
- Cost luminosity
- Optimization of required energy steps a priori possible via rather accurate continuums measurements
- Beam polarization
 - Polarized e- with P(e-)~90% expected
 - Polarized e+ with P(e+)~60% (even in baseline ~30% expected !)
 - Enable to reveal underlying structure of new physics
 - Enhance statistics

Undulator@150 vs 250 GeV

(See also EUROTEV-Report-2005-015-1)

- Only some physics thoughts (see also weblog, July 08)
- 250 position: higher yield (about a factor ~3) but lumi problems for low \sqrt{s}
 - For current parameters: drops below design value 1.5 from $\sqrt{\,\text{s}\text{=}300}$ GeV downwards
 - Possible lumi loss could be compensated by using bypass and half rate if lumi drops by factor 2
 - For current parameters this should happen between 200-240 GeV
- What's about expected physics in this energy range?

Physics at $\sqrt{s=200-300 \text{ GeV}}$

• Light Higgs:

- should be in range [115 180] GeV, that means
- first measurements will be done at 500 and 350 GeV and predict optimal steps for threshold scans
- Higgs mass in continuum up to 50 MeV
- Threshold scans needed, e.g. for spin verification: 3 steps needed
- Couplings measurements optimal at 50GeV+threshold: -> almost beyond critical region σ(HZ)+50 GeV -> [260-320] GeV or at top threshold: anyway ok

Which other physics is crucial?

- Top threshold: happens at 350 GeV.....ok
- Light SUSY:would be lovely...
 - Remember: ew. Fits are consistent with mX~200 GeV....
 - studies will anyway be done first at 500 GeV
 - If threshold scans required, number of needed energy steps optimized via the continuum measurements (similar as for Higgs)

Why polarized e⁻ and e⁺ beams?

- Comprehensive overview in hep-ph/0507011, Phys.Rept.460 (2008), GMP et al.
 - executive summary: <u>http://www.ippp.dur.ac.uk/LCsources/</u>
- Goals: Polarized beams required to
 - analyze the structure of all kinds of physics
 - improve statistics: enhance rates, suppress backgrounds
 - get systematic uncertainties under control
- Exist example where even a 100% e- beam is not sufficient, P(e+) is really required....→ report
- High precision measurements at GigaZ
 - require polarized e- and e+ beams as well

Positron Source@Durham 10/09

G. Moortgat-Pick

New physics where
$$P(e^+)$$
 required
• Association of chiral electrons to
scalar partners $e_{\overline{L},R} \leftrightarrow \tilde{e}_{\overline{L},R}$
and $e_{L,R}^+ \leftrightarrow \tilde{e}_{R,L}^+$:
s-channel t-channel
 $e_{\overline{L},R}^- \bigvee \tilde{e}_{R,L}^+ e_{\overline{L}}^- \bigvee \tilde{e}_{R}^+$
 $e_{R,L}^+ \bigvee \tilde{e}_{R,L}^+ e_{\overline{L}}^+ \bigoplus \tilde{e}_{R}^+$
1. separation of scattering versus
annihilation channel
2. test of 'chirality': only $\tilde{e}_{L}^+ \tilde{e}_{R}^-$ may
survive at P(e-) > 0 and P(e+) > 0!

Even high P(e-) not sufficient, P(e+) is substantial!

Positron Source@Durham 10/09

G. Moortgat-Pick

Background suppression

WW, ZZ production = large background for NP searches!

 W^- couples only left-handed:

 \rightarrow WW background strongly suppressed with right polarized beams!

Scaling factor = $\sigma^{pol}/\sigma^{unpol}$ for WW and ZZ:

$P_{e^-} = \mp 80\%, P_{e^+} = \pm 60\%$	$e^+e^- \to W^+W^-$	$e^+e^- \rightarrow ZZ$
(+0)	0.2	0.76
(-0)	1.8	1.25
(+-)	0.1	1.05
(-+)	2.85	1.91

Enhancing eff. lumi

• Effective polarization

$$P_{eff} := (P_{e^-} - P_{e^+})/(1 - P_{e^-} P_{e^+})$$

= $(\#LR - \#RL)/(\#LR + \#RL)$

• Fraction of colliding particles $\mathcal{L}_{eff}/\mathcal{L} := \frac{1}{2}(1 - P_{e^-}P_{e^+}) = (\#LR + \#RL)/(\#all)$

	RL	LR	RR	LL	P_{eff}	$\mathcal{L}_{eff}/\mathcal{L}$
$P(e^{-})=0,$	0.25	0.25	0.25	0.25	0.	0.5
$P(e^+) = 0$						
$P(e^{-}) = -1,$	0	0.5	0	0.5	-1	0.5
$P(e^+) = 0$						
$P(e^{-}) = -0.8$,	0.05	0.45	0.05	0.45	-0.8	0.5
$P(e^+) = 0$						
$P(e^{-}) = -0.8,$	0.02	0.72	0.08	0.18	-0.95	0.74
$P(e^+) = +0.6$						

Colliding particles:

 \Rightarrow Enhancing of \mathcal{L}_{eff} with $P(e^{-})$ and $P(e^{+})!$

Positron Source@Durham 10/09

G. Moortgat-Pick

Importance of P(e+) for A_{LR}

G. Moortgat-Pick

Remember power of GigaZ: Hints for SM versus SUSY?

Only Higgs @LHC No hints for SUSY

- Measure A_{LR} via Blondel scheme
- Deviations in sin²θ_{eff}
 – hints for SUSY
- Powerful test!
 Do not miss it

Positron Source@Durham 10/09

- As far as known today: only few energy steps required at √s=200-300 GeV
 - Both undulator positions 250,150 seems ok
 - Include half-pulse option to keep lumi loss to factor 2 below \sqrt{s} <250 GeV
- **GigaZ:** by-pass mode and 2nd source option
- Full lumi at 2xmtop and at 500 GeV required
 - More concerned about the lowP option: L/2 even at high energy run not acceptable
 - Please remember requirements of scope documents!

Positron Source@Durham 10/09

Concept of second e⁺ source

Nick Walker @ Frascati 11/98

Positron Source@Durham 10/09

Nick Walker @ Frascati 11/98 **Estimates of Luminosity**

1.00E+35 1.00E+34 100E+33 scenario 1 gamma scaling only scenario 2

Estimated Luminosity as a function of Beam Energy

Positron Source@Durham 10/09

G. Moortgat-Pick

Nick Walker @ Frascati 11/98

Beam energies between 50 and 250 GeV

50→100 GeV

- use secondary source

200-150 GeV e beam available from unused section of e+ linac

more than one bypass exit?

 $150 \rightarrow 250 \text{ GeV}$

use spent beam source

■ 100 \rightarrow 150 GeV

good question!