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Increasing Positron Yield Zouun

* Flux concentrator design provides an external
magnetic field after the target to increase positron
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Graphic from W. Liu and W. Gai, Argonne National Laboratory
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Approach Lonnne

Form an idea of what is really achievable
Match this to the performance envelope, provide

basis for an informed decision

Look at produced magnetic field- power supply

required

* Eva
* Eva

* Eva
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uate heating and mechanical loads on device
uate special loads due to operation area
uate effects of magnetic field on target




Specifications 7 —

¥4 T max field, with 1 ms pulse length,
operated at 5 Hz for 9 months at a time

* Placed behind target to provide focusing effect

* Consulting outside sources and working on
analysis

e Future analysis will need to look into effects of
beam particles impacting the device as well
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Code Structure for Analysis ...

*Solid lines indicate direct code

coupling Pro/E
(geometry
*Dashed lines show coupling by construction)

manual processing of results

Maxwell
(electrical/
magnetic
analysis)

*Results in ePhysics simulation of
structural behavior due to E&M
loading with cooling

. ePhysics

Mechanica CFDesign (thermal/

(structural/ e |(fluid/thermal - = === - - ' structural
therm.al analysis) analysis of
analysis) Maxwell results
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Modeled Geometry: Overall

ﬁVEINEEIHNG
Grid: 210 cm x 2.0 cm !!g! N

Notel: This geometry is our depiction of Wang’s Flux
Concentrator model where 4 Coils and 4 disks with a straight

bore are modeled.
H. Wang, et. al., “Modeling of Flux Concentrator, Argon National Lab, WF-
NOTE-234, August 2006. ANL.

Note 2: Disks and Coils material is Cu-OFHC; electrical
conductivity of 3.5714E+08 S/m. The cooling container is of

stainless steal with electrical conductivity of 1.E+06 S/m.

4 H. Brechna, et. al, “150 kOe Liquid Nitrogen Cooled Pulsed Flux-Concentrator

b. 1 crﬁ Bty Magnet,” Review of Scientific Instruments, V.36, No. 11, Nov 1965, pp.
ST < 1529-1535.

Note 3: Each plate has a 0.2 cm wide slit and each slit is rotated
by 90°in each successive plate.

Note 4: Cooling Channels were added based on Bitter Magnet
Design.
http.//www.magnet.fsu.edu/education/tutorials/magnetacademy/m
akingmagnets/page2.htm/
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Maxwell 3D used to predict magnetic field [iveneerivG

Time = 0.0002s Time = 0.0006s Time = 0.008s
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Schematic of the 100 kA Power Supply (PFN Scheme) and the
Load

10 Section PFN:
Energy Recovery Circuit Total of 680 730 microF, 1.2 kV Caps 4-Module Load Circuit m\’EERING
)
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|B| and H along center-line
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J and |J| at the xy cut-plane of plate3 and coll3 at

0.0006 s ﬁVEINEERING
- ILLLAI AL
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Cfdesign predicts the heat transfer conditions from the
cooling flow '

ENGINEERING

Eile Edit View Insert Analysis Info Applications Tools Window Help
EEEEEE R

 Select components to alter colors.

Brgnaa@sreh|e e oo)a kx|

b |2 o] ]

Show~| Setings -

J DISC_ASM_2.ASM
avz

o
ax
Hexrz
-] Pattern 1 of LOCAL_GROUP
(5] Pattem 6 of CORL.PRT
(] Pattern 4 of INSULATOR2.PRT
1[5 Pattern 5 of INSULATOR.PRT
) TOP_INS.PRT
J HOUSING.PRT
[ PLUGS.PRT
(] Pattern 7 of COL_2.PRT
o Bxtrude 1
CAPS.FRT
* Insert Here

Last Iteration/Step
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Geometry, EM loads, and cooling conditions are

being analyzed in ePhysics

Temperature[C]
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Force Density (Nlm3) ﬁVEINEERING
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Magnetic Forces on Components

ﬁVEINEERIN G
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Cryocooler Cost Estimate A

ENGINEERING

* Real FC will dissipate = 10 kW in ohmic losses

* Largest commercial cryocoolers able to
remove 0.5 -1 kW at =70 K with 4% efficiency

and cost = 100 S/W

* FC cryocoolers will cost = 1 MS for equipment
and 330,000 S/yr in electricity assuming rates
of 15 ¢/kW-hr
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LN Flow Will Remain Liquidf

ENGINEERING

LN pumped into the test FC assembly at 70 K
and a rate of 60 |/min for average AT <4 K

* Peak LN temperatures well below 77 K
* Peak LN flow speeds are approximately 40 cm/s
* Copper components stay below 80 K
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LN and Copper lemperature;, .
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LN Flow Speed Ronssano

(1) Yelocity Magnitude - cm/s
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Further Steps 7 —

* Determine what can realistically be built

* Linear effects only modeled- check to ensure
this is the operating range- device lifetime
indicates probable failure outside this regime

* |nvestigate effects of temperature on material
properties (do thermal, mechanical, or
electrical properties vary enough to be
important)

S&T Principal Directorate UL-
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Rotordynamics
y ﬁV/GINEERING

* Working with experimental team at Daresbury Laboratory
* Produced an FEA model of rotordynamic system

— Aids in interpretation of experimental data from rotor system

— Useful in predicting important behavioral features in dynamic behavior
of wheel experiment
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ROtO rdyna m iCS ﬁ%GINEERING

FEA Predicted Modal Frequency = 184 Hz
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Variety of loads on the target wheel ﬁ%mmm

= Radiation damage from the beam
= Thermal stress from the beam

= Mechanical stress from the rotation of the wheel
(~ 1000 r.p.m.)

Ti6Al4V target wheel

Nominally 1 m diameter,
1.4 cm thick

Graphic of target station layout from International Linear
Collider Reference Design Report: ILC Global Design
Effort and World Wide Study, August 2007
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Eddy currents produce further stresses [iveneerivG

= Motion of wheel in magnetic field of beam-line elements
(e.g. the OMD) generates eddy currents in the wheel

= The eddy currents produce additional thermal and
mechanical stresses:

« Thermal stress through Ohmic heating
« Mechanical stress through Lorentz forces

Experiments and simulations are

necessary to understand the effects of
eddy currents on the target wheel
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Experiment being conducted at Daresbury Laboratory

Electromagnet

Electromagnet

Target
wheel

Motor

ﬁVEINEERIN G

DL experiments evaluating:

« Magnetic field of the
electromagnet

 Torque

Eddy current simulations
underway at RAL

Conducting EM simulations of
the target wheel

Coordinating simulations with
RAL to ensure both use:

The same magnetic fields

from the electromagnet
The same geometry

Future collaborative design
work to reduce eddy current
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ﬁ\’/GINEERING

UK target wheel simulated in Ansoft Maxwell
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Reasonable agreement with measured magnetic field [iveneerivG

Measurements compared with simulated field in
slightly different locations
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10% agreement with Jim Rochford’s results for 1000 rpm [iveneerivG

0 ; ; ; = Immersion depth
' | ' IS 55 mm
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£ dense Iin the
2.; .
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: - ‘ : | copper, _o,ad
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F 20|\ 5 - '
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Magnetic field effects seen in the measurements [iveneerivG

PSD (dB)
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LLNL Areas of Work

* Flux concentrator studies

* Magnetic simulations of Daresbury Laboratory
spinning wheel experiment

* Rotordynamics analysis of Daresbury
Experiment
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Other plots...

ENGINEERING

(6) Static Temperature - Kelvin
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