

Helical Undulator Status and 2009 Progress

Dr Owen Taylor

On behalf of the Helical collaboration

Collaboration members ASTEC: J.A. Clarke, O.B. Malyshev, D.J. Scott, B. Todd, N Ryder RAL: E. Baynham, T. Bradshaw, J. Rochford, O. Taylor, A Brummit, G Burton, C Dabinett, S. Carr, A Lintern University of Liverpool: I.R. Bailey, J.B. Dainton, P. Cooke, T. Greenshaw, L. Malysheva DESY: D.P. Barber University of Durham: G.A. Moortgat-Pick Argonne: Y. Ivansuhenkov

STFC Technology

Scope of Presentation

Introduction

- Undulator requirements and specification
- 4 metre module prototype manufactured
- •Recap
 - Cryogenic leak
 - Magnet test
- Magnet alignment
- •Excessive heat loads
 - Effects of heat load
 - Attempts to fix heat load

•Future plans

- Show magnet working in cryostat with re-condensation
- Investigate beam heating effects

ILC requirements

Undulator :

To produce a circularly polarised positron beamHigh energy electron beam through helical undulatoremission of polarised photons.

•Downstream high Z target, pair production

•Positrons stripped off to produce polarised positron beam.

Intro: Magnet Specification

Following a pretty extensive **R&D programme** and **modelling study** the following specification was developed for the undulators:

Undulator Period	1	11.5 mm
Field on Axis		0.86 T
Peak field homo	<1%	
Winding bore		>6mm
Undulator Lengt	า	147 m
Nominal current		215A
Critical current		~270A
Manufacturing to	olerances	
	winding concentricity	20µm
	winding tolerances	100µm
	straightness	100µm
NbTi wire Cu:Sc	ratio	0.9
Winding block		9 layers
		7 wire ribbon

This defines the shortest period undulator we could build with a realistic operating margin.

•150 m of undulator •Module length

> herma contraction

- Vacuum considerations < 4 m
- Collimation < 4 m
- Magnet R&D 2 m section realistic •
- •Minimise number of modules
 - 2 magnet sections per module

Intro: 4 m Prototype

Recap: Cryogenic Leak

Created a large open Liquid nitrogen bath

Found a leak at the indium seal between magnets

Fixed this by modifying the clamp arrangement

More worryingly - leak through the magnet structure

Leak fix with a silver soldered copper-iron Bi metal ring

Implemented this solution on some test pieces and it has survived 20 thermal cycles.

Each magnet joint then thermally cycled and tested 10+ times

Final leak check: <1e-12mb/ls in the beam tube vessel at temps <77K

Recap: Magnet Testing

Magnet rigidity – iron yoke

Active alignment system

Magnet straightness

•Prototype alignment

+/-200 µm in X

- +/-170 µm in Y
- •Not adequate to deliver a straightness of +/-50 μm
- •Developed an active alignment Yoke
- •Allows the straightness of the magnet to be aligned to better than 50 $\mu m.$
- •In principle the proto type can be retrofitted with this system at a later date.

Active alignment system

Active alignment system

Relies on the flexibility of the magnet

Over sized yoke aperture for the magnet allowing 100 μm clearance

Periodically placed adjustors allowing adjustment in X and Y

After adjustment actuators locked off, a small spring maintains alignment and takes up the thermal contraction when cold

Small contact pads around the magnet to spread contact pressure and avoid damage to winding

All components are magnetic steel to minimise any losses in the iron circuit

Manufactured 1/2 metre long test section

Getting some metrology data with this at the moment

Our initial tests shows we can position the magnet to within $+/-10 \ \mu m$ at the actuator point

There has been an excessive heat load on the helium bath

- This has caused a large boil off of liquid helium – should be no boil off in re-condensing system
- Low temperature superconductor section of current lead too hot

There have been many attempts to identify and remove unwanted heat loads

So far, these modifications have made little effect

Heat load audit

Cryogenic system

•Magnets cooled in liquid helium bath

•Re-condensing system with Sumitomo RDK4150

•Weak thermal link between bath and condenser

•Final stage charge system with liquid

80

Heat load inventory

- •50 W on rad shield
- •1 W helium bath

0.5 W contingency

Heat Loads

Supports		Bellows			Current Le	ads	Radiation	diation			Radiation t	urret
load	130 kg	id	0.01	m	number	4	diameter	neter	0.3 n	n	diameter	0.3 m
	1300 N	od	0.02	m	Q/lead	12	Length	gth	4 n	n	Length	0.5 m
stress	30 Mpa	convolution	0.004	m	Lead opt	216	Area	a	3.77 n	n^2	Area	0.47 m^2
area	43.3 mm^2	L	0.03	m								
length	0.1 m	Leff	0.105	m			q		1 V	N/m^2	q	1 W/m^2
Int kdt	100 W/m/K	t	0.0005	m								
# supports	4	A	2.36E-05	m^2								
dia	3.71 mm^2	Int kdt	2800	W/m/K								
		# bellows	2									
Q	0.04 W	Q	1.26		Q	48	Q		3.77 V	N	Q	0.47 W
												total
												53 5 W

4.5K

Supports			Bellows			Current I	eads	feed thros			Joints turret		Radiation		Radiation t	urret
load	130	kg	id	0.01		number	4	rho 300K	1.6E-08		resistance	1E-07	diameter	0.2 m	diameter	0.2 m
	1300	N	od	0.02		Q/lead	0.065	RRR	100		I	250	Length	4 m	Length	0.5 m
stress	10	Мра	convolution	0.004		Lead	500	rho 4K	1.6E-10				Area	2.51 m^2	Area	0.31 m^2
area	130	mm^2	L	0.03				rod dia	0.006	m						
length	0.25	m	Leff	0.105	m			rod length	0.04	m			q	0.2 W/m^2	q	0.2 W/m^2
Int kdt	110	W/m/K	t	0.0005				R	2.3E-07	Ohm						
# supports	4		A	2.36E-05	m^2			I	250	А						
dia	6.43	mm^2	Int kdt	300	W/m/K			number	4		number	8				
			# bellows	2												
Q	0.06	W	Q	0.13		Q	0.26	Р	0.05659	W	Р	0.05 W	Q	0.50 W	Q	0.06 W
																total
no interc	ept															1.1 W

System cooled down in April 2009

- 2 big issues
- Large liquid helium boil off
- Low Temperature Superconductor (LTS) section of current lead suspected to be at 6 K, not 4 K
- LTS tail would have been normal, damage to tails of both magnets

Fixes

- Ensure HTS ends ~4.2 K
- Implement a shunt to protect LTS lead when normal
- Add some thermometry

~2.5 W heat load!

If 1.5 W re-condensing is working, total heat load = 4 W

April 2009 - Copper shunts added to LTS cooling improved

Before April 2009 cool down

LTS straight from vacuum feed through to HTS HTS cooled by braid as shown

LTS cooling and shunt

AB temperature sensor - all HTS 4K ends

June 2009 - Helium Vent pipe repair

During re-build it was noticed that Helium vent pipe incorrectly manufactured The 'Anti-Oscillation Damper' (ATO) was fitted upside-down! Allows large convective path from 300 K into 4 K liquid This was cut out and re-welded

Science & Technology Facilities Council June 2009 - Liquid Nitrogen Pre-Cooling Lines Removed

Liquid n2 lin	е
Thigh	66
Tlow	4.2
Outer Diam	0.012
Inner Diam	0.006
Length	0.05
x-sect area	8.5E-05
Number	2
Total area	1.70E-04
Int Hi SS	232.640
Int lo SS	0.242
Difference	232.397
Load W	0.79
conduction intoplate	0.79

During the subsequent re-build it was decided to disconnect the nitrogen pre-cooling lines Could potentially add 0.8 W heat load

Does not include conduction down N2 ice

July 2009 Cool Down

System cooled down in July 2009 Re-condensation does not work -

system pressurizing rapidly

Still ~2 W (3.5 W total) heat load!

All voltage developed was across LTS
Temp of LTS shunt was 7 K plus
Helium bath top plate also 7 K plus
LTS damaged again

August - 2009 Heat load on ^{4 current leads} ^{156mW static} conduction ^{A current leads}

For equilibrium the load through the bolts and knife edge must = 260 mW

For this to happen temp of top plate is ~7 K. Very similar to that seen by A-Bradleys

				SIST KHITE edge		SIST DOILS	
Thigh	60	Thigh	60	Thigh	6.8	Thigh	6.8
Tlow	6	Tlow	6	Tlow	4.2	Tlow	4.2
op current (A)	215	Outer Diam	0.04	Outer Diam	0.222	Outer Diam	0.008
		Inner Diam	0.036	Inner Diam	0.216	Inner Diam	0
Number	4	Length	0.659	Length	0.0065	Length	0.024
		x-sect area	2.4E-04	x-sect area	2.1E-03	x-sect area	5.0E-05
		Number	1	Number	1	Number	24
Cond @ 215A	0.039			degradation for touching contact	1	degradation for touching	1
Joule heat @215A	0.009	Total area	2.39E-04				
		Int Hi SS	193.508	Total area	2.06E-03	Total area	1.21E-03
		Int lo SS	0.667	Int Hi SS	0.951	Int Hi SS	0.951
		Difference	192.841	Int lo SS	0.242	Int lo SS	0.242
Cond @ 320A	0.058			Difference	0.709	Difference	0.709
Joule heat @320A	0.022						
Load W	0.19	Load W	0.07	Load W	0.23	Load W	0.04
						-	
conduction intoplate	0.26			conduction outofplate	0.26		

StSt knife edge		StSt bolts	3	Copper clamps			
Thigh	4.33	Thigh	4.33	Thigh	4.33		
Tlow	4.2	Tlow	4.2	TIow	4.2		
Outer Diam	0.222	Outer Diam	0.006	dx	0.003		
Inner Diam	0.216	Inner Diam	0	dy	0.02		
Length	0.0065	Length	0.024	Length	0.05		
x-sectarea	2.1E-03	x-sectarea	2.8E-05	x-sectarea	6.0E-05		
Number	1	Number	24	Number	6		
		degradation for		degradation for			
degradation for touching contact	1	touching contact	1	touching contact	1		
Total area	2.06E-03	Total area	6.79E-04	Totalarea	3.60E-04		
Int Hi SS	0.264	Int Hi SS	0.264	Int Hi OFHC	90.700		
Int lo SS	0.242	Intio SS	0.242	Int lo OFHC	57.405		
Difference	0.022	Difference	0.022	Difference	33.295		
Load W	0.01	LoadW	0.001	LoadW	0.24		
conduction outofplate	0.25						

conduction outofplate

With copper 'C' clamps, top plate should be no more than 4.3 K

September 2009 Cool Down

leve [litres

No Difference!

Top plate and LTS shunt at same temperature

Knife edge theory not correct

- Boil off has not been altered
- Always ~ 2 W above that of the cold heat re-condensation

Where is the heat leak? Helium bath location pins

To minimise heat leak into helium bath, the helium bath location pins were removed The heat load from radiation through two 7 cm x 3 cm holes at 300 K amounts to ~2.0 W

The thermal conductivity ~1 W worst case

October 2009 Cool Down Different methods of pre-cooling

The magnet was pre-cooled with the recondensing cold head

9 days to cool magnet to 4 K150 litres of liquid helium used to reach 4 K

The magnet was pre-cooled with liquid nitrogen 2.5 days to cool magnet to 4 K 100 litres of liquid helium used to reach 4 K

However, due to re-condensing design, difficult to remove nitrogen and a blockage occurred – system had to be warmed again

Current status

Carbon magnet support rods have failed One end of magnet dropped by ~15 mm - Bonded joints on both CF rods had failed at 4 K end.

Pre production rods were tested to >1.5 kN at 77 K

Once carbon rods are fixed, will cool down again Check boil off (i.e. heat load) Test magnet Investigate bore heating effects

Where is the heat leak? Other Concerns

Future plans - "Beam heating" test

"Beam heating" test planned

Chain of resistors in evacuated bore to simulate beam heating effects

From Duncan's thesis the calculated heat loads span range 0.1 W to 1.4 W per module

Current experiment can apply 0 to 2.5 W inside the bore of the magnet

The intention is to run the magnets at their nominal field wind up the power in steps until the magnet quenches

This gives a measure of the peak power the magnets can sustain

Summary

4 metre prototype has been built

Each 2 metre magnet reaches beyond design field The magnets have a straightness of +/-200 μ m This is greater than the +/-50 μ m required With an active alignment system, +/-10 μ m achievable

Cryogenic issues

There have been 'cryogenic' leaks that have now been fixed There is a heat leak greater than originally expected causing

-High helium boil off

-Low temperature superconductor too warm to pass operating current

Fixes

Many attempts to fix heat leak

None successful so far – latest ideas seem more plausible

Future work

Show magnet running in cryostat with re-condensation Bore heater tests to simulate beam heating effects