LITHIUM LENSES FOR POSITRONS AND ANTIPROTONS IN COMPARISON

Alexander Mikhailichenko Cornell LEPP, Ithaca, NY 14853

6th ILC Positron Source Collaboration Meeting October 28, 2009 Durham, UK Although usage of lithium lens for focusing of (anti)protons is more or less known, usage of Lithium lens for focusing of positrons remains not known widely; the only operational Lithium lens for these purposes resides in BINP

In this contest it is interesting to compare the suggested Lithium lens for ILC and routinely operational lenses for a/protons.

Support for this investigation obtained from ILC GDE Regional Directorship of America.

LI LENS BASICS

Li also serves as a coolant for windows

Windows made from BN, BC or Be

33

W is also under consideration for entrance window

For given focal distance *F*, radius *a*, length *L*, the current required is

 $I \cong \frac{a^2 \cdot (HR)}{0.2FL}$

For $F \sim 1$ cm, $a \sim 0.5$ cm, $L \sim 0.5$ cm, $E \sim 20$ MeV $\rightarrow I \sim 166$ kA

LENS FOR POSITRONS -ILC

Lens suggested for ILC is represented below. Lithium (92% 7Li and 7.5% 6Li) is located inside a thin wall Titanium-alloy tube having specific resistance much higher, than Lithium.

Lens itself is a small insertion at the center; extended flanges serve for electrical contact. 1–volume with Lithium, 2–window (Be/BC/BN), 3–electrical contacts with caverns for Li, 4–tubing for Lithium in/out .

Li lens with current duct attached

A.Mikhailichenko," Lithium Lens (I)", CBN -09-4, Aug 2009, 17pp. http://www.lepp.cornell.edu/public/CBN/2009/CBN09-4/CBN%2009-04.pdf

All references are there

View from other side

Current duct sould transfer ~ 150 kA in ~4 ms pulse with repetition rate up to 10 Hz

Scaled view on vacuumed feed through and lens; vacuum case not shown

Windows attachment technique

Temperature in lens generated by the beam only

K=0.92; λ=1.15; Eff=1.6; Effp=32%; Undulator length=35m; Distance to target=300m

		DIST	TRIBUTION	OF TEMPER	ATURE IN	LENS T(R,	Z) DEG P	ER 10^13	INITIAL B	ELECTRONS	
		DEL	_TAR =	.070 cm,	DELTA Z	= .050 c	m, PHOTO	INS GENERA	TED = 7	76991	
Be entr.	ţ	39.396 38.128	R 23.757 22.818	16.011 15.563	11.015 10.848	6.154 6.569	3.953 4.287	2.325 2.792	1.351 1.669	.861 1.254	.275 .433
	Ť	15.000	9.208	6.263	4.499	2.633	1.745	1.173	.689	.425	.162
		14.017	8.512	6.076	4.383	2.648	1.802	1.217	.795	.492	.197
		13.356	7.904	5.805	4.219	2.664	1.849	1.276	.875	.568	.198
		12.685	7.414	5.488	4.143	2.651	1.842	1.333	.948	.609	.205
Li		12.128	6.922	5.273	4.042	2.591	1.882	1.314	.968	.652	.221
		11.566	6.518	5.049	3.814	2.604	1.856	1.315	.959	.663	.221
		11.103	6.203	4.873	3.616	2.603	1.802	1.297	.904	.709	.213
		10.406	6.081	4.592	3.504	2.588	1.751	1.305	.913	.663	.226
		9.889	5.853	4.370	3.399	2.467	1.774	1.240	.915	.659	.224
	Ļ	9.733	5.852	4.353	3.523	2.629	1.944	1.376	1.030	.738	.238
Re exit	Î	19.89	12.03	9.07	6.89	4.98	3.58	2.46	1.72	1.25	.40
		20.17	12.17	9.15	6.93	5.04	3.76	2.65	1.84	1.42	.48

11

NEW TYPE OF COMMUTATORS FOR HIGH CURRENT

Fig.2. Reverse – switched dinistors for peak current from 200 kA to 500 kA and blocking voltage of 2400 V, encapsullated in hermetic metal – ceramic housing and without housing (RSD sizes of 64, 76, and 100 mm)

S.A. Belyaev, V.G.Bezuglov, V.V.Chibirikin, G.D.CHumakov, I.V.Galakhov, S.G.Garanin, S.V.Grigorovich, M.I.Kinzibaev, A.A.Khapugin, E.A.Kopelovich, F.A.Flar, O.V.Frolov, S.L.Logutenko, V.A.Martynenko, V.M.Murugov, V.A.Osin, I.N.Pegoev, V.I.Zolotovski, "*New Generation of High-Power Semiconductor Closing Switches for Puled Power Applications*", 28 ICPIG, July 15-20, 2007, Prague, Czech Republic, Topic#17, pp.1525-1528.

Lenses with solid Lithium operating ~40 years at BINP

LENSES FOR ANTIPROTONS

Target for antiprotons, typically is made from Nickel of ~7 *cm* long (~half nuclear interaction length) and operates at <1Hz repetition rate.

Lithium lens from BINP developed for FNAL. 1–Lithium, 2–Be window, 3–Case, 4– sphenoid clamps, 5–coolant jacket, 6–Ti cylinder, 7–Coolant in/out.

FNAL Lithium lens in transformer. Scale is given by the ruler at the bottom of this photo.

Photo from J.Morgan, "Lithium Lens Upgrade", report FNAL, 2002

The same lens; view from the other side

View to the BINP lens from the side with in/out liquid Lithium tubings

High Gradient Solid Lens Prototype Design

From FNAL antiproton source web site

From J.Morgan, "Lithium Lens Upgrade", report FNAL, 2002

COMPARISON

Lithium lenses for positrons and anti-protons represented in the same scale

It is clearly seen from here that from engineering point of view lens for positrons is a device with much modest parameters. One can expect that the lifetime will be also much longer. No doubts that this lens could be well operational during few months period. New materials for windows, such as BN and BC are forced to help in this intention.

Table 1. Parameters of lenses for positrons, antiprotons and for neutrino-factory

	Positrons	Antiprotons	Neutrino factory
Diameter, <i>cm</i>	1.4	2-3.6	1.8- 6
Length, <i>cm</i>	0.5-1	10	15
Current, <i>kA</i>	<150-75	~850	500
Pulse duty, <i>msec</i>	~4	0.1	~1
Repetition rate, Hz	5	0.7	0.7
Resistance $\mu\Omega$	32-64	50	27
Gradient, <i>kG/cm</i>	<65	55	45
Surface field, <i>kG</i>	43-22	100	80-40
Pulsed Power, <i>kW</i>	~720-360	36000	6750
Average Power, <i>kW</i>	~15-8	3.6	4.7
Temperature gain/pulse, °K	170-85	80	80
Pressure at axis, atm	75-19	400	256-64

One can see that lens for positrons have highest average power, thanks to repetition rate of 5 Hz. From the other hand it has lowest axial pressure. Usage of liquid Lithium with external cooling allows drastic reduction of thermal load to the lens body and to the windows.

SUMMARY

The lens suggested for ILC positron system is much more compact, than the ones used for collection of antiprotons. All technological challenges could be borrowed from well operated lenses used for collection of antiprotons.

Lens with solid Lithium in operation for about 40 years in BINP gives another example of success of this concept.

Usage of Lithium lens for positron collection looks guarantied after confirmation made by usage of numerical modeling (KONN), that the energy deposition by the beam remains small compared with the direct energy deposition made by the feeding current running through the body of Lithium.

Backup slides

General par	ameters
Energy of primary beam	~150 GeV-350GeV
Undulator period λ	10-12 mm
<i>K</i> factor, $K = eH\lambda/2\pi/mc^2$	0.4-1
Undulator length	≤ 200 m
Efficiency, e ⁺ / e ⁻	≥ 1.5
Polarization	≥ 65%
Target W/Ti	1.75 mm/14.8 mm
Energy of quanta	~9-20 MeV
Distance to the target	100-300 m
Lens	
Feeding current, I	<150 kA
Field at surface, $H_{\rm m}$	43 kG
Gradient	\leq 62kG/cm
Pulsed power	~200kW
Average power	~4kW
Pulsed duty , $ au$	<4msec
Lens diameter, 2a	1 cm
Length, L	0.5-1 cm**
Axial pressure, P_0	74atm (for <i>L</i> =0.5cm)
Temperature gain per train	≤ 170°C at 150kA

Flange with recession has faster relaxation time

KONN – Monte-Carlo code for positron production starting from undulator

KONN can calculate now the energy deposition and temperature rise in target and in Li lens at any point.

Distance between target and lens serves for enlargement the spot size on the entrance

TEMPERATURE ALONG THE **W** TARGET FOR DIFFERENT RADIUSES

per 10¹³ initial electrons

Each particle radiates 2.76 GeV in undulator

27

DIST	RIBUTION	OF TEMPI	ERATURE IN	TARGET TCR	,Z) DEG	PER 10^13	INITIAL	ELECTRONS		
	DELT	AR =	.100 cm,	DELTA Z =	.003 cm				Col	limato
R−►				l i i i i i i i i i i i i i i i i i i i						
.178	.111	.052	.012	.001	.001	.000	.000	.000	.000	
6.306	2.380	.628	.076	.004	.001	.000	.000	.000	.000	
12.211	4.606	1.062	.160	.009	-002	- 000	- 000	.000	.000	
17.650	6.666	1.420	.233	.020	.001	- 002	. 000	. 000	.000	
23.229	8.744	1.735	.215	.022	.001	.001	- 000	.000	.000	
29.563	10.592	2.031	.237	.023	. 000	. 000	. 000	. 000	. 000	
34.737	12.165	2.363	-272	.025	-001	- 000	- 000	- 000	- 000	
37.023	13.706	2.505	.268	- 026	- 001	- 666	- 000	- 666	. 000	
43.200	10.145	2.033	- 277	.025	- 000	- 000	- 000	.000	-000	
47.773	10 (00	3.002	.270	.032	.000	. 000	.000	.000	.000	
51.0//	10 002	3.474	.302	.033	- 000	- 000	- 000	- 000	.000	
54.737 C0 799	20 044	3.320 3 AEE	.311	.042	. 000	- 000	- 000	.000	.000	
30.733 CB 355	20.744	3.400	- 312	- 020	- 000	- 000	- 000	- 000	.000	
60.337	22.003	2 000	- 347	.020	.000	.000	.000	.000	.000	
64 106	23.100	2 020	279	620	.000	.000		.000	000	
69 045	25 610	4 259	396	025	000	0000	.000	000	000	
60 764	26 800	4 935	270	632	000	.000		.000	000	
51 050	27 366	4 476	200	026	000	000	.000	000	000	
74 173	20 002	4 638	279	020	000	.000		.000	000	
75 208	29 744	4 727	378	M22	001	000	000	000	000	
76 633	20 042	4 762	397	020	000	.000		000	000	
78 364	31 152	4 869	378	.030	.000	.000	000	000	000	
79 947	31 063	5 025	200	031	000		000	000	000	
79 545	31 740	5 219	456	038	000	000	000	000	000	
80 736	32 216	5 176	448	632	000	9999	999	000	000	
81 911	32 812	5 205	423	633	001	000	001	000	000	
83 666	33 400	5 312	440	029	000		000	000	000	
83 296	34 506	5 341	428	ดรด	001	000	000	ัดดด	000	
84 613	34 365	5 394	392	041	GOO	000	GOO	000	000	
85 876	35 674	5 450	400	ัดรัด	001	000	ดดด	ัดดด	000	
86.751	35.954	5.579	432	927	. 999	. 999	. 999	.000	. 999	
88.622	36.495	5.402	434	.025	.000	.000	. 000	. 000	.000	
89.485	36.344	5.629	440	.026	. 991	.000	. 999	. 000	999	
89.609	36.608	5.621	.433	.022	. 000	. 000	. 000	. 000	000	
88.595	36.706	5.672	.429	.030	.001	.000	.000	.000	.000	
89.832	36.755	5.675	.494	.026	.000	.000	.000	.000	.000	
90.468	37.159	5.757	.472	.029	.001	.000	.000	.000	.000	
91.011	37.239	5.867	.449	.026	.000	.000	.000	.000	.000	
90.623	37.963	5.753	.507	.022	.000	.000	.000	.000	.000	
91.176	38.300	5.777	.515	.026	.001	.000	.000	.000	.000	
90.441	38.423	5.921	.494	.026	.000	.000	.000	.000	.000	
93.246	38.856	5.822	.534	.028	.000	.000	.000	.000	.000	
92.526	38.793	5.903	.513	.026	. 000	.000	.000	.000	.000	
93.128	39.141	5.767	. 496	.018	.001	.000	.000	.000	.000	
92.849	39.155	5.677	. 498	.025	.000	.000	.000	.000	.000	1
92.913	39.756	5.822	. 493	.018	.000	.000	.000	.000	.000	
92.267	40.144	5.969	.467	.017	.001	.000	.000	.000	. 000	28
93 494	40 505	5 786	. 490	.020	nnn	000	001	000	aaa	

											_
	DIST	RIBUTION	OF TEMPI	ERATURE IN	TARGET TO	R,Z) DEG	PER 10^13	INITIAL	ELECTRONS		
Rim W target;		DELT	AR =	.100 cm,	DELTA Z =	.003 cm				Coll	imator
<i>R</i> =50 cm	R-►	oor	000	-004	000	000	000	-000	000	000	
	300	.005	.002	- 001	- 000	- 000	- 000	- 000	- 000	- 000	
	.581	.219	.051	. 008	. 000	. 000	. 000	. 000	. 000	. 000	
<i>t</i> =50 Hz	.840	.317	.068	.011	.001	.000	.000	.000	.000	.000	
	1.106	- 416	- 083	.010	-001	.000	.000	.000	.000	.000	
	1.408	-504	.097	-011	-001	- 000	- 000	- 000	- 000	- 000	
	1.054	-577	-113	-013	-001	.000	- 000	- 000	.000	- 000	
	2 060	749	135	014	001	.000	.000	.000	.000	- 000	
K-0 02	2.276	816	143	013	.002	้ดดด	ัดดด	ัดดด	ัดดด	000	
11-0.32	2.432	.886	.156	.014	.002	.000	.000	.000	.000	.000	
	2.616	.946	.158	.015	.002	.000	.000	.000	. 000	.000	
	2.797	.997	.165	.015	.001	.000	.000	. 000	. 000	.000	
	2.874	1.051	.175	- 016	-001	.000	.000	- 000	. 000	- 000	
	3.001	1.118	-181	.016	-001	- 000	- 000	- 000	- 000	- 000	
	3.053	1 220	-166	-010	-001	- 000	- 999	- 000	- 666	- 000	
ETTD=32%	3 322	1 276	202	018	001	000	000	000	.000	- 000	
	3.428	1.303	213	019	002	ัดดด	ัดดด	ัดดด	ัดดด		
	3.532	1.385	.221	.018	.002	.000	.000	.000	.000	.000	
Lund=35m	3.581	1.416	.225	.018	.001	.000	.000	.000	. 000	.000	
	3.649	1.431	.227	.019	.001	.000	.000	.000	.000	.000	
	3.732	1.483	.232	.018	.002	.000	. 000	.000	. 000	. 000	
$\lambda -1.15$ cm	3.807	1.479	.239	-019	- 001	.000	. 000	- 000	- 000	. 000	
$n_{\rm u}$ – 1.100m	3.788	1.511	- 249	- 022	- 002	- 000	- 000	- 000	- 000	- 000	
	3.045	1 562	240	- 021	-002	- 000	- 000	- 000	.000	- 000	
Dic=300 m	3.984	1.590	253	.020	.002	.000	ัดดด	.000	.000	.000	
DIS=300 III	3.966	1.643	.254	.020	.001	.000	.000	.000	.000	. 000	
	4.029	1.636	.257	.019	.002	.000	.000	.000	.000	.000	
C 1EkClom	4.089	1.699	.260	.019	.001	.000	.000	.000	. 000	.000	
G=40KG/CIII	4.131	1.712	-266	.021	.001	.000	.000	.000	. 000	.000	
	4.220	1.738	-257	- 021	- 001	.000	- 000	- 000	- 000	- 000	
	4.201	1 742	- 268	- 021	-001	- 000	- 000	- 000	- 666	- 000	
I=110KA	4 219	1 748	270	ดวิต	001	000	000	000	000	000	
	4.278	1.750	270	024	.001	.000	.000	.000	000	.000	
	4.308	1.769	.274	.022	.001	.000	.000	.000	.000	.000	
Rcoll=0.5cm	4.334	1.773	.279	.021	.001	.000	.000	.000	. 000	.000	
	4.315	1.808	.274	- 024	.001	.000	- 000	- 000	- 000	.000	
	4.342	1.824	-275	- 025	- 001	. 000	- 000	- 000	- 000	- 000	
	4.307	1 950	.282	-024	- 001	- 000	.000	- 000	.000	000	
	4 406	1 847	281	025	001	000	000	000	000	.000	
	4,435	1.864	275	024	.001	้ดดด	้ดดด	ัดดด	.000	.000	
	4.421	1.865	.270	.024	.001	.000	.000	.000	.000	.000	
	4.424	1.893	.277	.023	.001	. 000	. 000	. 000	. 000	.000	
	4.394	1.912	.284	.022	.001	.000	.000	.000	.000	.000	29
	4.452	1.929	.276	.023	.001	.000	.000	.000	.000	.000	

K=0.44; Eff=1.58; Effp=67%; Rcoll=0.06; Lamb=1cm;Lund=170m; 150 GeV Each particle radiates 1.07 GeV in undulator

DISTRIBUTION OF TEMPERATURE IN TARGET T(R,Z) DEG PER 10^13 INITIAL ELECTRONS

DISTRIBUTION OF TEMPERATURE IN TARGET T(R,Z) DEG PER 10/13 INITIAL ELECTRONS

DELTA R = .012 cm, DELTA Z = .003 cm

DELTA R = .012 cm, DELTA Z = .003 cm

R−►										R−►									
.000	.002	.005	.005	.002	.001	.000	.000	.001	.000	.000	.366	.891	.766	.294	.231	.000	.000	.110	.000
.365	.276	.205	.168	.110	.003	.000	.002	.000	.000	61.159	46.252	34.342	28.174	18.390	.567	.000	.275	.000	.000
.630	.589	. 400	.335	.208	. 009	. 000	. 000	. 000	. 000	105.617	98.783	67.078	56.238	34,923	1,450	. 000	. 000	. 000	. 000
804	866	643	526	347	015	QQQ	aaa	000	aaa	134 738	145 274	107 852	88 149	58 141	2 573	Ø25	ดดด	ดดด	050
996	1 144	844	708	420	023	000	000	000	000	166 932	191 743	141 460	118 791	73 655	2 924	000	000	000	000
1 250	1 200	1 002	000	EEQ	041	000	000	.000	000	206 202	210 260	192 026	142 001	09 135	6 016	.000	000	000	000
1.000	1.000	1 201	- 000	.000	.011	.000	.000	.000	.000	260.276	217.300	103.020	110.001	100 000	0.710	. 000	.070	.000	. 000
1.756	1.601	1.381	1.003	.031	.057	- 000	.000	.000	. 000	294.366	268.408	231.499	168.075	105.857	7.746	. 000	. 000	.000	. 000
2.041	1.888	1.566	1.090	.720	.083	-001	- 000	- 000	- 000	342.125	316.534	262.530	182.721	120.720	13.948	.231	- 666	- กกก	- 000
2.200	2.169	1.756	1.234	.826	.100	.002	. NNN	. 000	. 000	368.868	363.671	294.349	206.862	138.410	16.831	.295	. 000	- מממ	. 000
2.539	2.410	1.884	1.418	.882	.131	.004	.000	.000	.000	425.653	404.083	315.942	237.827	147.805	22.008	.662	.000	.046	.000
2.765	2.504	2.116	1.522	.970	.164	.006	.000	.000	.000	463.673	419.850	354.846	255.157	162.570	27.548	1.023	. 000	.000	. 000
2.889	2.745	2.174	1.598	1.046	.184	.011	.000	.000	.000	484.464	460.318	364.562	267.948	175.372	30.790	1.784	.000	.000	.000
3.405	2.935	2.336	1.676	1.141	.215	.014	.001	.000	.000	570.879	492.064	391.750	280.971	191.264	36.087	2.275	.246	. 000	. 000
3.445	3,031	2.486	1.734	1,180	.221	.019	.003	.000	.000	577.650	508.118	416.767	290.663	197.778	37,072	3,208	-565	. 000	. 000
3 630	3 099	2 709	1 879	1 282	255	024	003	RAR	000	608 652	519 617	454 206	314 976	214 973	42 696	4 864	570	ดดด	000
3 904	3 366	2 830	2 012	1 255	204	036	001	001	000	627 811	564 410	474 500	227 252	210 275	50 007	6 041	121	122	.000
2 920	2 200	2 9 44	9 191	1 200	212	640	002	001	000	CAR EAE	EC6 201	476 761	35T 400	210 004	EO EER	7 114	240	949	000
3 000	3.307	2 000	2.121	1 400	- 31 3	014	.002	001	000	010.010	000.471	100.001	333.000	210.021	54.550	10 000	.317	410	.000
3.777	0.010	2.770	2.107	1.402	- 311	- 000	-000	- 001	- 000	070.104	000.040	502.050	307.037	235.150	54.177	10.000	-0.07	.117	- 000
3.874	3.878	3.013	2.248	1.475	.331	.075	.008	.001	.001	649.275	650.198	505.209	376.906	247.331	55.479	12.514	1.405	-182	.105
4.001	4.074	3.173	2.340	1.531	.363	- 068	-012	- 000	- 000	670.760	683.094	532.002	392.349	256.708	60.871	11.425	2.056	.054	. 000
4.115	4.137	3.271	2.485	1.543	. 398	- 076	.016	.001	. 000	689.872	693.557	548.392	416.580	258.708	66.692	12.724	2.675	.251	. 000
4.245	4.110	3.366	2.621	1.583	.453	.078	.024	.003	.000	711.817	689.077	564.338	439.400	265.416	75.893	13.020	4.029	.506	.000
4.678	4.128	3.461	2.563	1.694	.481	.086	.023	.005	.000	784.330	692.138	580.342	429.650	284.009	80.706	14.401	3.933	.756	. 000
4.814	4.149	3.584	2.633	1.698	.524	.097	.018	.007	.000	807.120	695.661	600.961	441.406	284.761	87.820	16.322	3.081	1.119	.000
4.803	4.301	3.690	2.614	1.685	.543	.117	.026	.006	.000	805.369	721.066	618,735	438.359	282.589	91.042	19.697	4.382	1.046	. 000
5.067	4.599	3.619	2.682	1.803	.547	.138	.026	.007	.001	849.548	771-024	606.704	449.717	302 273	91.773	23.204	4.288	1.116	221
4 838	4.644	3.660	2.743	1.800	569	141	039	005	003	811 220	778 575	613 200	459 937	301 816	95 389	23 658	6 522	875	459
4 777	4 696	3 764	2 846	1 845	586	164	Ø45	008	003	800 987	787 428	631 179	477 260	309 269	98 307	27 423	7 545	1 324	502
4 601	4 571	3 994	2 951	1 9009	586	174	046	010	004	771 494	766 200	651 149	404 000	220 040	00 210	20 215	7 707	1 660	905
4 999	4 570	2 950	0 007	1 000	500	200	050	010	004	000 200	700.307	CAE EAA	E00 000	220.010	00 /00	27.213	0 400	2 000	946
A 64E	4 6 94	2 000	2.707	1 002		100	010	014	.001	000.307	700.200	040.044	400 740	340.030	70.400	22.011	0.403	4.007	. (13
4.010	4.001	3.700	2.700	1.733	.007	-177	.090	. 110	.000	(/3./33	771.435	663.186	477.717	327.486	78.805	33.377	8.063	4.765	.737
4.778	4.607	3.771	3.077	1.768	.620	.206	.050	.023	.005	801.143	772.357	669.241	517.308	333.390	103.875	34.529	10.058	3.871	.858
4.536	4.546	4.049	3.020	1.992	.649	.197	.071	.022	. 008	760.605	762.134	678.826	506.274	333.931	108.824	33.058	11.834	3.699	1.287
4.564	4.695	3.976	3.130	1.944	.660	.216	-072	.021	.010	765.209	787.192	666.652	524.772	325.880	110.589	36.224	12.129	3.596	1.695
4.549	4.763	3.918	3.164	2.030	.673	.210	.075	.025	. 009	762.684	798.661	656.898	530.469	340.428	112.829	35.192	12.593	4.199	1.521
4.406	4.773	3.948	3.052	2.070	.699	.220	.089	.027	.008	738.784	800.192	661.873	511.769	347.102	117.257	36.807	14.967	4.447	1.385
4.793	4.688	3.979	3.063	2.068	.706	.237	.082	.026	.009	803.648	786.068	667.198	513.551	346.693	118.341	39.750	13.728	4.368	1.527
4.798	4.726	3.949	3.037	2.084	.711	.239	.086	.033	.008	804.455	792.443	662.102	509.171	349.473	119.208	40.148	14.402	5.610	1.337
4.836	4.790	4.093	3.101	2.086	.749	.245	.096	.038	.011	810.827	803.191	686.244	520,007	349.774	125.541	41.145	16.020	6.394	1.836
4.715	4.577	4.049	3.134	2.072	.750	.252	. 093	.037	.009	790 541	267 371	678 829	525 540	347 476	125 695	42 285	15 628	6 230	1 579
4 563	4 692	4 043	3 169	2 004	749	286	097	034	013	765 124	786 768	677 815	531 297	335 965	125 630	48 003	16 346	5 715	2 202
4 610	4 854	4 076	3 145	2 051	787	286	107	037	017	772 995	912 900	692 420	E97 34E	242 976	122 000	10 000	17 007	6 214	2 706
4 703	4 731	4 052	3 276	2 035	765	277	117	044	011	700 617	702 220	670 EQE	EA0 90C	343.070	198 222	AC AAD	10 610	0.214	1 760
1 010	1 609	A 1E1	0 010	2 000 C	. 103	202	100	040	010	700.017	713.441	077.373	517.200	341.134	120.024	40.111	17.017	7.300	1.001
7.710	4.074	4 004	3.413	2.075		- 202	.130	.010	.014	824.523	700.024	075.788	538.730	351.347	130.270	97.270	21.810	7.178	1.761
5.000	4.035	4.071	3.443	4.105	. 807	- 307	.135	.043	.015	851.787	777.160	685.842	540.311	352.949	135.594	51.520	22.700	7.206	2.435
4.777	4.777	4.176	3.187	4.117	. 798	- 326	.140	.041	.017	837.876	804.250	700.175	534.671	354.944	133.738	54.654	23.493	6.908	2.825
4.898	4.821	4.066	3.165	2.101	.792	.296	.133	.046	.021	821.201	808.332	681.701	530.736	352.325	132.775	49.629	22.237	7.706	3.438
4.679	4.969	4.171	3.156	2.094	.762	.319	.132	.053	.021	784.468	833.114	699.302	529.240	351.133	127.829	53.541	22.193	8.837	3.468
4.523	5.009	4.138	3.187	2.137	.782	.319	.123	.063	.020	758.353	839.836	693.726	534.303	358.301	131,182	53.518	20.638	10.598	3.311
4.538	4.797	4.185	3.277	2.138	.764	.316	.131	.064	.024	760.916	804.293	701.618	549.469	358.503	128.069	53.013	21.894	10.654	4.053
4.531	5.012	4.166	3.228	2.116	.781	.319	.142	.062	.022	759.666	840.416	698.492	541.247	354.832	130,926	53.415	23.809	10.373	3.694
4.705	4.771	4.190	3.206	2.133	.786	.308	.146	.058	.023	788,896	799 929	702.600	537,479	357 705	131 744	51 558	24 539	9.651	3,926
5.104	4.749	4.259	3.182	2.099	.788	.312	.134	.059	. 024	855 792	796 170	714 141	533 449	351 962	132 154	52 366	22 490	9 896	3 961
5 189	4.636	4 317	3 128	2.129	817	313	134	Ø63	M23	869 968	777 350	723 870	524 522	356 965	137 059	52 399	22 522	10 522	3 891
5 185	4 620	4 330	3 140	2 153	825	202	138	057	R28	969 488	774 607	725 022	E96 E1E	261 010	120 269	E0 74E	22.337	0 501	A DEE
5 070	4 662	4 296	2 1 2 9	2 001	023	200	124	061	020	051 570	704.007	740 550	520.515	301.017	100.004	50.705	23.213	10 005	4.755
3.877	4.003	9.200	3.126	2.071	1023	- 344	1.1.94	.001	.027	051.572	781.763	718.550	524.466	350.632	137.771	53.952	22.574	10.235	4.802

Moving target

Stationary target

<u>30</u>

To the choice of material for windows

		Ta	ible 1: propei	ties of Lithiu	$m, Li^{1}, Be,$	BC, BN, W
	Units	Li	Be	BN	B_4C	W
Atomic number, Z		3	4	5/7	5/6	74
Yong modulus	\underline{GPa}	4.9	287	350-400	450	400
Density, ρ	$[g/cm^3]$	0.533	1.846	3.487	2.52	19.254
Specific resistance	Ohm-cm	1.44 x10 ⁻⁵	1.9 x10 ⁻⁵	>1014	7.14 x10 ⁻³	5.5 x10 ⁻⁶
Length of Xo, IXo	ст	152.1	34.739	27.026	19.88	0.35
Boil temperature	$^{\circ}C$	1347	2469	Subling at men	3500	5660
Melt temperature	$^{\circ}C$	180.54	1287	2973	2350	3410
Compressibility	cm²/kg	8.7 x10 ⁻⁶	9.27 x10 ⁻⁷			2.93 x10 ⁻⁷
Grüneisen coeff.) = 1		57 			2.4
Speed of sound (long)	m/sec	6000	12890	16400	14920	5460
Specific heat	J/g°K	3.6	1.82	1.47	0.95	0.134
Heat conductivity	W/cm/ <u>°C</u>	0.848	2	7.4	0.3-0.4	1.67
Thermal expansion	1/ <u>°C</u>	4.6 x 10 ⁻⁶	11 x 10 ⁻⁶	2.7 x 10 ⁻⁶	5 x 10 ⁻⁶	4.3x10 ⁻⁶

¹ Total mass of Lithium in $\sim 70 kg$ human body is $\sim 7 mg$.

Heat capacity, Heat conductivity – functions of temperature; this need to be taken into account

LOSSES FOR DIFFERENT MATERIAL OF TARGET

If energy Q deposited in mass m, then the temperature rise is

$$\Delta T = \frac{Q}{mc_V},$$

where $\underline{c}_{\underline{k}}$ stands for the heat capacity. In its turn, for the $1 cm^2$ cross section

$$Q \cong l[cm] \times l[cm^{2}] \times 2[MeV/g/cm^{2}] \times \rho[g/cm^{3}].$$

For the gamma target, the length *l* is a fraction of radiation length, $l \cong \frac{1}{2}X_0 / \rho$,

$$Q \cong X_0 \times 1[MeV]$$

From the other hand

$$m = \rho \times \mathbf{l}[cm^2] \times \frac{X_0}{2\rho} = \frac{1}{2}X_0 \times \mathbf{l}[g],$$

so the temperature gain goes to be

$$\Delta T \cong \frac{2}{c_{V}[J/g/^{o}K]} \begin{bmatrix} {}^{o}K \end{bmatrix} \left(\cong \frac{2A}{25[Mol/g/^{o}K] \cong const : (D-P \ law)} \right)$$

For Ti $c_{V}=0.5 J/g/{}^{\circ}K$; for W $c_{V}=0.134 J/g/{}^{\circ}K$; for Pb $c_{V}=0.13 J/g/{}^{\circ}K$, So ratio of temperatures comes to

$$\Delta T_{Ti} : \Delta T_W : \Delta T_{Pb} \cong 1 : 3.7 : 3.8; \qquad (A_{Ti} : A_W : A_{Pb} \cong 47 : 183 : 207)$$

The ratio difference in temperature gain is not so drastic; however it is important if the temperature approaching the melting threshold.

Usage of heavier targets desirable from the point of lowering of focal depth (~10 times) needed to be serviced by capturing optics, however. Also, the positron production efficiency is higher for heavier materials. All together this gives ~50% higher yield for W compared with Ti.

E-166 REJECTED TI TARGET

Losses calculated with KONN compared with systematic calculations done with GEANT 3.21 by A.Dubrovin

M.Dubrovin," Energy Deposition in the Li Lens", Note on Nov 18, 2007,17pp. GOOD AGREEMENT

Also with calculations with FLUKA:

S.Riemann, A.Schälicke, A.Ushakov, D.Andrienko, "Activation and Capture simulation", ILC Positron Source Collaboration Meeting", October 29, 2008, 16 pp.

Part	E [keV/ph]
Target	803.2
Be window (left)	<mark>11</mark> .6
Li -	37.9
Be window (right)	6.5

$$\langle E_{ph} \rangle$$
 = 10.4 MeV

Undulator Length = 131.6 m

Our numbers: Nγtot =101 1.55 MeV/e (W) 1.44 MeV/e

1.61 MeV/e

1.05 MeV/e

Also considering calculations with GEANT4:

W.Liu, W.Gai ,"Update on Be Window Thermal Issues", HEP, ANL, May 16,2007 In this publication the gamma beam only was considered; no cooling; Be survives ~20sec

Can be used for compensation of spherical aberrations

Lithium loop

Recent calculation of Lithium lens done with FlexPDE[©] code at Cornell

Time dependent 3D calculations

Li lens can be used with any target: liquid metal (Pb-Bi, Hg) or Ti rim

Right after the target located Aluminum made accelerating structure immersed in solenoidal magnetic field. Sectioned solenoid wound with Al conductor. Sections supplied with reversed polarities