Scattering amplitudes via AdS / CFT

Luis Fernando Alday

IAS

Annual Theory Meeting - Durham - December 2009
arXiv:0705.0303,..., arXiv:0904.0663, L.F.A \& J. Maldacena; arXiv:0911.4708, L.F.A, D. Gaiotto \& J. Maldacena

Motivations

We will be interested in gluon scattering amplitudes of planar $\mathcal{N}=4$ super Yang-Mills.

Motivation: It can give non trivial information about more realistic theories but is more tractable.

- Weak coupling: Perturbative computations are easier than in QCD. In the last years a huge technology was developed.
- The strong coupling regime can be studied, by means of the gauge/string duality, through a weakly coupled string sigma model.

Aim of this project

Learn about scattering amplitudes of planar $\mathcal{N}=4$ super
Yang-Mills by means of the AdS/CFT correspondence.
(1) Background

- Gauge theory results
- String theory set up
- Explicit example
(2) Minimal surfaces
- Minimal surfaces in $A d S_{3}$
- Minimal surfaces in $A d S_{5}$
(3) Conclusions and outlook

Gauge theory amplitudes (Bem. Dixon and Sminov, also Ansstassou, Kosomer)

- Focus in gluon scattering amplitudes of $\mathcal{N}=4$ SYM, with $S U(N)$ gauge group with N large, in the color decomposed form
$A_{n}^{L, \text { Full }} \sim \sum_{\rho} \operatorname{Tr}\left(T^{a_{\rho(1)}} \ldots T^{a_{\rho(n)}}\right) A_{n}^{(L)}(\rho(1), \ldots, \rho(2))$
- Leading N color ordered n-points amplitude at L loops: $A_{n}^{(L)}$
- The amplitudes are IR divergent.
- Dimensional regularization $D=4-2 \epsilon \rightarrow A_{n}^{(L)}(\epsilon)=1 / \epsilon^{2 L}+\ldots$
- Focus on MHV amplitudes and scale out the tree amplitude

$$
M_{n}^{(L)}(\epsilon)=\frac{A_{n}^{(L)}(\epsilon)}{A_{n}^{(0)}} \quad \rightarrow \quad \mathcal{M}_{n}=\sum_{L} \lambda^{L} M_{n}^{(L)}
$$

Based on explicit perturbative computations:

BDS proposal for all loops MHV amplitudes

$$
\log \mathcal{M}_{n}=\sum_{i=1}^{n}\left(-\frac{1}{8 \epsilon^{2}} f^{(-2)}\left(\frac{\lambda \mu^{2 \epsilon}}{s_{i, i+1}^{\epsilon}}\right)-\frac{1}{\epsilon} g^{(-1)}\left(\frac{\lambda \mu^{2 \epsilon}}{s_{i, i+1}^{\epsilon}}\right)\right)+f(\lambda) F i n_{n}^{(1)}(k)
$$

- $f(\lambda), g(\lambda) \rightarrow$ cusp/collinear anomalous dimension.
- Fine for $n=4,5$, not fine for $n>5$.

AdS / CFT duality (Maddecena)

Four dimensional	Type IIB string theory
maximally SUSY Yang-Mills	

$$
\sqrt{\lambda} \equiv \sqrt{g_{Y M}^{2} N}=\frac{R^{2}}{\alpha^{\prime}} \quad \frac{1}{N} \approx g_{s}
$$

- The $\operatorname{AdS} /$ CFT duality allows to compute quantities of $\mathcal{N}=4$ SYM at strong coupling by doing geometrical computations on AdS.
- Remember a similar problem: Expectation value of Wilson loops at strong coupling (Maldacena, Rey)

- $d s^{2}=R^{2} \frac{d x_{3+1}^{2}+d z^{2}}{z^{2}}$
- We need to consider the minimal area ending (at $z=0$) on the Wilson loop.

$$
\langle W\rangle \sim e^{-\frac{\sqrt{\lambda}}{2 \pi} A_{\min }}
$$

- Scattering amplitudes can be computed at strong coupling by considering strings on $A d S_{5}$ (L.F.A., Maldacena)
- As in the gauge theory, we need to introduce a regulator.

$$
d s^{2}=R^{2} \frac{d x_{3+1}^{2}+d z^{2}}{z^{2}}
$$

- Place a D-brane at $z=z_{I R} \gg R$.
- The asymptotic states are open strings ending on the D-brane.
- Consider the scattering of these open strings (representing the gluons)
- Need to find the world-sheet representing this process...
- The world-sheet is easier to find if we go to a dual space: $A d S \rightarrow A \tilde{d} S$ (four T-dualities plus $z \rightarrow r=R^{2} / z$).

$$
d s^{2}=\frac{d x_{3+1}^{2}+d z^{2}}{z^{2}} \rightarrow d \tilde{s}^{2}=\frac{d y_{3+1}^{2}+d r^{2}}{r^{2}}
$$

- The problem reduces to a minimal area problem!

What is now the boundary of our world-sheet?

- For each particle with momentum k^{μ} draw a segment $\Delta y^{\mu}=2 \pi k^{\mu}$
- Concatenate the segments according to the particular color ordering.
- Polygon of light-like edges.
- Look for the minimal surface ending in such polygon.
- As we have introduced the regulator, the minimal surface ends at $r=R^{2} / z_{I R}>0$.
- As $z_{I R} \rightarrow \infty$ the boundary of the world-sheet moves to $r=0$.
- Vev of a Wilson-Loop given by a sequence of light-like segments!

Prescription

$$
\mathcal{A}_{n} \sim e^{-\frac{\sqrt{\lambda}}{2 \pi} A_{\text {min }}}
$$

- \mathcal{A}_{n} : Leading exponential behavior of the n-point scattering amplitude.
- $A_{\text {min }}\left(k_{1}^{\mu}, k_{2}^{\mu}, \ldots, k_{n}^{\mu}\right)$: Area of a minimal surface that ends on a sequence of light-like segments on the boundary.

Four point amplitude at strong coupling

Consider $k_{1}+k_{3} \rightarrow k_{2}+k_{4}$

- The simplest case $s=t$.

Need to find the minimal surface ending on such sequence of light-like segments

$$
\begin{aligned}
r\left(y_{1}, y_{2}\right) & =\sqrt{\left(1-y_{1}^{2}\right)\left(1-y_{2}^{2}\right)} \\
y_{0} & =y_{1} y_{2}
\end{aligned}
$$

In embedding coordinates $\left(-Y_{-1}^{2}-Y_{0}^{2}+Y_{1}^{2}+\ldots+Y_{4}^{2}=-1\right)$

$$
Y_{0} Y_{-1}=Y_{1} Y_{2}, \quad Y_{3}=Y_{4}=0
$$

- "Dual" $S O(2,4)$ isometries \rightarrow most general solution $(s \neq t)$

Let's compute the area...

- In order for the area to converge we need to introduce a regulator.
- Supergravity version of dimensional regularization: consider the near horizon limit of a $D(3-2 \epsilon)$-brane!

Regularized supergravity background

$$
d s^{2}=\sqrt{\lambda_{D} c_{D}}\left(\frac{d y_{D}^{2}+d r^{2}}{r^{2+\epsilon}}\right) \rightarrow S_{\epsilon}=\frac{\sqrt{\lambda_{D} c_{D}}}{2 \pi} \int \frac{\mathcal{L}_{\epsilon=0}}{r^{\epsilon}}
$$

- The regularized area can be computed and it agrees precisely with the BDS ansatz!

What about other cases with $n>4$?

- Dual $S O(2,4)$ symmetry constraints the form of the answer (Drummond et. al.)
- for all $n S O(2,4) \rightarrow A_{\text {strong }}=A_{B D S}+R\left(\frac{x_{i j} x_{k l}}{x_{i k} x_{j l}}\right)$

We can construct such cross-ratios for $n \geq 6$ so for this case the answer will (in principle) differ from BDS.

How do we compute the area of minimal surfaces for $n \geq 6$?

- Reduced/baby model: Strings on $A d S_{3}$.
- Full problem: Strings on AdS_{5}

Strings on AdS_{3} : The external states live in $2 D$, e.g. the cylinder.

- Consider a zig-zagged Wilson loop of $2 n$ sides
- Parametrized by $n X_{i}^{+}$coordinates and n X_{i}^{-}coordinates.
- We can build $2 n-6$ invariant cross ratios.

- Consider classical strings on AdS_{3}.

Strings on AdS_{3}

Strings on $A d S_{3}: \vec{Y} \cdot \vec{Y}=-Y_{-1}^{2}-Y_{0}^{2}+Y_{1}^{2}+Y_{2}^{2}=-1$
Eoms : $\partial \bar{\partial} \vec{Y}-(\partial \vec{Y} . \bar{\partial} \vec{Y}) \vec{Y}=0, \quad$ Virasoro : $\partial \vec{Y} \cdot \partial \vec{Y}=\bar{\partial} \vec{Y} \cdot \bar{\partial} \vec{Y}=0$
Pohlmeyer kind of reduction \rightarrow generalized Sinh-Gordon

$$
\begin{gathered}
\alpha(z, \bar{z})=\log (\partial \vec{Y} \cdot \bar{\partial} \vec{Y}), \quad p^{2}=\partial^{2} \vec{Y} \cdot \partial^{2} \vec{Y} \\
\downarrow \\
p=p(z), \quad \partial \bar{\partial} \alpha-e^{2 \alpha}+|p(z)|^{2} e^{-2 \alpha}=0
\end{gathered}
$$

- $\alpha(z, \bar{z})$ and $p(z)$ invariant under conformal transformations.
- Area of the world sheet: $\mathcal{A}=\int e^{2 \alpha} d^{2} z$

Generalized Sinh-Gordon \rightarrow Strings on AdS_{3} ?

- From α, p construct flat connections $B_{L, R}$ and solve two linear auxiliary problems.

$$
\begin{aligned}
\left(\partial+B^{L}\right) \psi_{a}^{L} & =0 \\
\left(\partial+B^{R}\right) \psi_{\dot{a}}^{R} & =0
\end{aligned} \quad B_{z}^{L}=\left(\begin{array}{cc}
\partial \alpha & e^{\alpha} \\
e^{-\alpha} p(z) & -\partial \alpha
\end{array}\right)
$$

Space-time coordinates

$$
Y_{a, \dot{a}}=\left(\begin{array}{cc}
Y_{-1}+Y_{2} & Y_{1}-Y_{0} \\
Y_{1}+Y_{0} & Y_{-1}-Y_{2}
\end{array}\right)=\psi_{a}^{L} M \psi_{\dot{a}}^{R}
$$

One can check that Y constructed that way has all the correct properties.

Relation to Hitchin equations

Consider self-dual YM in 4d reduced to 2 d

- $A_{1,2} \rightarrow A_{1,2}$: 2d gauge field, $A_{3,4} \rightarrow \Phi, \Phi^{*}$: Higgs field.

Hitchin equations

$$
F^{(4)}=* F^{(4)}
$$

$$
\begin{aligned}
& D_{\bar{z}} \Phi=D_{z} \Phi^{*}=0 \\
& F_{z \bar{z}}+\left[\Phi, \Phi^{*}\right]=0
\end{aligned}
$$

- We can decompose $B=A+\Phi$.
- $d B+B \wedge B=0$ implies the Hitchin equations.
- We have a particular solution of the $S U(2)$ Hitchin system.
- Nice relation: $\mathcal{A}=\int \operatorname{Tr} \Phi \Phi^{*}$.
- Classical solutions on $\mathrm{AdS}_{3} \rightarrow p(z), \alpha(z, \bar{z})$

$$
d w=\sqrt{p(z)} d z, \quad \hat{\alpha}=\alpha-\frac{1}{4} \log p \bar{p} \rightarrow \partial_{w} \bar{\partial}_{\bar{w}} \hat{\alpha}=\sinh 2 \hat{\alpha}
$$

- We need to get some intuition for solutions corresponding to scattering amplitudes...
$n=2$ "square" solution: $p(z)=1, \quad \hat{\alpha}=0$
- For the solutions relevant to scattering amplitudes we require $p(z)$ to be a polynomial and $\hat{\alpha}$ to decay at infinity.

Consider a generic polynomial of degree $n-2$

$$
p(z)=z^{n-2}+c_{n-4} z^{n-4}+\ldots+c_{1} z+c_{0}
$$

- We have used translations and re-scalings in order to fix the first two coefficients to one and zero.
- For a polynomial of degree $n-2$ we are left with $2 n-6$ (real) variables.
- This is exactly the number of invariant cross-ratios in two dimensions for the scattering of $2 n$ gluons!

Null Wilsons loops of $2 n$ sides $\Leftrightarrow p^{(n-2)}(z)$ and $\hat{\alpha}(z, \bar{z}) \rightarrow 0$

- Degree of the polynomial \rightarrow number of cusps.
- Coefficients of the polynomial \rightarrow shape of the polygon.
- Simplest case: $p(z)=z^{n-2}$
- At infinity the connection becomes very simple (since $\hat{\alpha} \rightarrow 0$) and we can solve the inverse problem:

$$
\begin{gathered}
\psi^{L} \approx a_{s}\binom{e^{w+\bar{w}}}{0}+b_{s}\binom{0}{e^{-(w+\bar{w})}}, \quad \psi^{R} \approx c_{s}\binom{e^{i(w-\bar{w})}}{\downarrow}+d_{s}\binom{0}{\left.e^{-i(w-\bar{w})}\right)} \\
Y=M_{s}^{++} e^{w+\bar{w}+i(w-\bar{w})}+M_{s}^{+-} e^{w+\bar{w}-i(w-\bar{w})}+\ldots
\end{gathered}
$$

- As $w=z^{n / 2}$, the z-plane is naturally divided into n equal angular sectors, called Stokes sectors.
- In each sector only one of the terms in Y will dominate and the space time position (at the boundary, since Y is very large) will be fixed .

- Each sector corresponds to a cusp.
- For $p(z)=z^{n-2}$ we obtain a regular polygon of $2 n$ sides with $Z_{2 n}$-symmetry.
- The generic situation will be very similar, but the polygon will not be regular.
- Question: For regular polygons, how do we compute the area?

$$
A=\int e^{2 \hat{\alpha}} d^{2} w=\int\left(e^{2 \hat{\alpha}}-1\right) d^{2} w+\int 1 d^{2} w=A_{\sinh }+A_{d i v}
$$

- $A_{\text {div }}$ gives simply the expected divergent piece.
- $A_{\text {sinh }}$ is finite, we don't need to introduce any regulator.

$$
\begin{array}{r}
p=z^{n-2} \rightarrow \hat{\alpha}=\hat{\alpha}(\rho): \text { Sinh-Gordon } \rightarrow \text { Painleve III } \\
\hat{\alpha}^{\prime \prime}(\rho)+\frac{\hat{\alpha}^{\prime}(\rho)}{\rho}=\frac{1}{2} \sinh (2 \hat{\alpha}(\rho))
\end{array}
$$

- Solved in terms of Painleve transcendentals!

$$
A_{\text {sinh }}=\frac{\pi}{4 n}\left(3 n^{2}-8 n+4\right)
$$

Strings on $A d S_{5}$:

- We have still a holomorphic quantity $P(z)=\partial^{2} \vec{Y} . \partial^{2} \vec{Y}$, but not the square of a polynomial anymore!
- Two more physical fields: $\alpha(z, \bar{z})=\log (\partial \vec{Y} . \bar{\partial} \vec{Y})$ but also $\beta(z, \bar{z})$ and $\gamma(z, \bar{z})$.

How does the counting of cross-ratios work?

- For N gluons: $P(z)=z^{N-4}+c_{N-6} z^{N-6} \ldots \rightarrow 2 N-10$ real coefficients.
- For $A d S_{4}$ we have exactly $2 N-10$ cross ratios, so this is the whole picture (α and β are unique once you have fixed $P(z)$)
- For $A d S_{5}$ there are $N-5$ extra degrees of freedom coming from γ (which are hard to see), giving the expected $3 N-15$ cross-ratios in 4d scattering!

What about the Hitchin equations?

- Not anymore Left+Right factorization but we still have a Hitchin system!
- We obtain a particular case of $S U(4)$ Hitchin system.

General prescription for polynomial $p(z)$ in $A d S_{3}$ or $P(z)$ on $A d S_{5}$

- Compute the space-time cross-ratios in terms of the coefficients of $P(z)$.
- Compute the area in terms of the coefficients of $P(z)$.
- Write the area in terms of the space-time cross-ratios.

First non trivial cases:

- On $\operatorname{AdS}_{3}: p(z)=z^{2}-m$, the "octagon".
- On $A d S_{5}: ~ P(z)=z^{2}-U$, the "hexagon".
but...
- We don't know explicitly the solution for $\alpha \ldots$
- We cannot perform the inverse map...
- The w-plane is complicated...

How do we proceed?

Ask someone else!

- Exactly the same $S U(2)$ Hitchin systems in a completely different context! (Gaiotto, Moore \& Neitzke)

Idea: Use integrability to promote the Hitchin system to a family of flat connections (introduce a spectral parameter)

$$
B_{z}^{(\zeta)}=A_{z}+\frac{\Phi_{z}}{\zeta}, \quad B_{\bar{z}}^{(\zeta)}=A_{\bar{z}}+\zeta \Phi_{\bar{z}}
$$

Why is this any useful?

- Consider the deformed auxiliary linear problems leading to $Y[\zeta]$ (such that $Y[1]$ is the physical solution).
- Conside the cross-ratios as a function of ζ (such that at $\zeta=1$ we obtain the physical cross-ratios).
- For $\zeta \rightarrow 0$ or $\zeta \rightarrow \infty$ the connections simplify drastically and we can solve such inverse problems!
- Actually, we observe also Stokes sectors and discontinuities in the ζ plane.
- On the other hand, we expect the cross-ratios as a function of ζ to be analytic away from $\zeta=0, \infty$.
- We need to find analytic functions with specific jumps when we go from one sector to another.
- This defines a Riemann-Hilbert problem which can be rewritten as an integral equation for the cross-ratios! (as a function of ζ)
For the case of the Hexagon $P(z)=z^{2}-U^{3 / 4}$

$$
\begin{aligned}
& \epsilon(\theta)= 2|U| \cosh \theta+\frac{\sqrt{2}}{\pi} \int d \theta^{\prime} \frac{\cosh \left(\theta-\theta^{\prime}\right)}{\cosh 2\left(\theta-\theta^{\prime}\right)} \log \left(1+e^{-\tilde{\epsilon}}\right)+ \\
&+\frac{1}{2 \pi} \int d \theta^{\prime} \frac{1}{\cosh \left(\theta-\theta^{\prime}\right)} \log \left(1+\mu e^{-\epsilon}\right)\left(1+\frac{e^{-\epsilon}}{\mu}\right) \\
& \tilde{\epsilon}(\theta)=\quad 2 \sqrt{2}|U| \cosh \theta+\frac{1}{\pi} \int d \theta^{\prime} \frac{1}{\cosh \left(\theta-\theta^{\prime}\right)} \log \left(1+e^{-\tilde{\epsilon}}\right)+ \\
&+\frac{\sqrt{2}}{\pi} \int d \theta^{\prime} \frac{\cosh \left(\theta-\theta^{\prime}\right)}{\cosh 2\left(\theta-\theta^{\prime}\right)} \log \left(1+\mu e^{-\epsilon}\right)\left(1+\frac{e^{-\epsilon}}{\mu}\right)
\end{aligned}
$$

- Exactly the form of TBA equations!
- What is the regularized area?

$$
\begin{aligned}
& A_{\text {reg }}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \theta 2|U| \cosh \theta \log \left(1+e^{-\epsilon} \mu\right)\left(1+\frac{e^{-\epsilon}}{\mu}\right)+ \\
&+\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \theta 2 \sqrt{2}|U| \cosh \theta \log \left(1+e^{-\tilde{\epsilon}}\right)
\end{aligned}
$$

- Exactly the free energy of the TBA system!

Some exact results...

- Large temperature/Conformal limit of the TBA equations

$$
U=0 \rightarrow u_{1}=u_{2}=u_{3}
$$

Hexagonal Wilson loop in $A d S_{5}$ in $U \rightarrow 0$ limit

$$
R(u, u, u)=\frac{\phi^{2}}{3 \pi}+\frac{3}{8}\left(\log ^{2} u+2 L i_{2}(1-u)\right), \quad u=\frac{1}{4 \cos ^{2}(\phi / 3)}
$$

Some more exact results...
Eight sided Wilson loop in $A d S_{3}$ (the first non trivial)

$$
A=\frac{1}{2} \int d t \frac{\bar{m} e^{t}-m e^{-t}}{\tanh 2 t} \log \left(1+e^{-\pi\left(\bar{m} e^{t}+m e^{-t}\right)}\right)
$$

What have we done and what needs to be done

- We have given a further step towards the computation of classical solutions relevant to scattering amplitudes at strong coupling.
- Integrability is the key ingredient of the computation

For the future...

- Could we compute these amplitudes at all values of the coupling?!
- What about other kind of solutions? e.g. correlations functions?
- Include fermions and understand non MHV amplitudes?

