LHC PROSPECTS FOR COSMOLOGY

Annual Theory MeetingJonathan FengIPPP, DurhamUniversity of California, Irvine17 December 2009

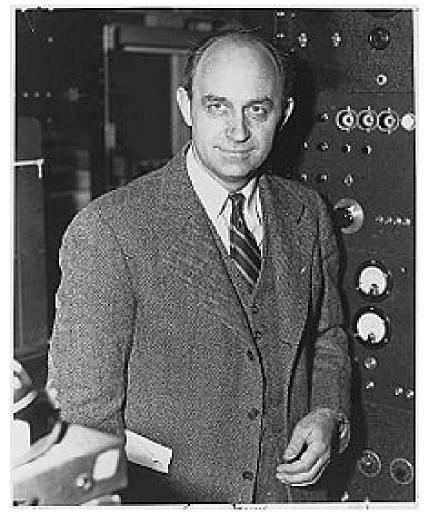
LHC PHYSICS

- Higgs Boson
- Particle Physics Beyond the Standard Model
 - Supersymmetry
 - Extra Dimensions
 - 4th Generation Quarks and Leptons
 - New Forces
 - ...
- Cosmology

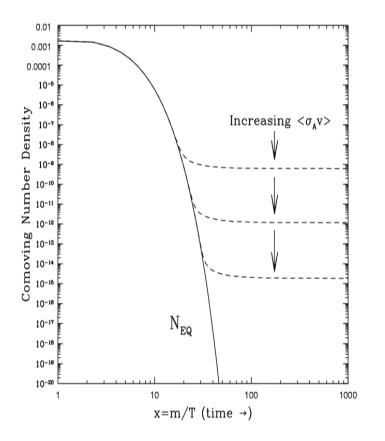
. . . .

- Dark Matter
- Dark Energy
- Baryogenesis/Leptogenesis

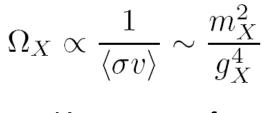
THE WIMP MIRACLE

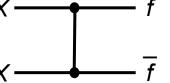

 Fermi's constant G_F introduced in 1930s to describe beta decay

 $n \rightarrow p \ e^- \overline{v}$


• $G_F \approx 1.1 \ 10^5 \text{ GeV}^{-2} \rightarrow \text{ a new}$ mass scale in nature

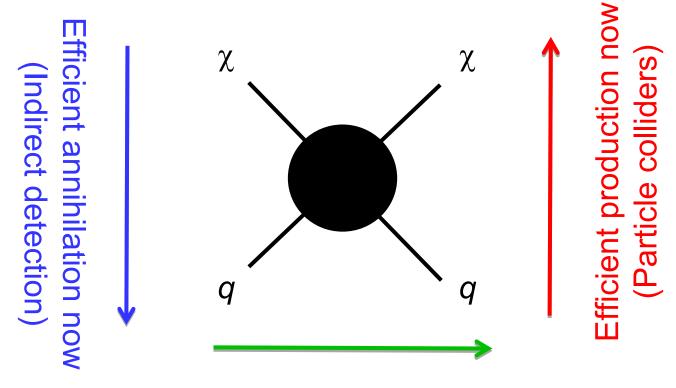
 $m_{weak} \sim 100 \text{ GeV}$


 We still don't understand the origin of this mass scale, but every attempt so far introduces new particles at the weak scale



THE WIMP MIRACLE

 Assume a stable weak-scale particle exists. The resulting relic density is

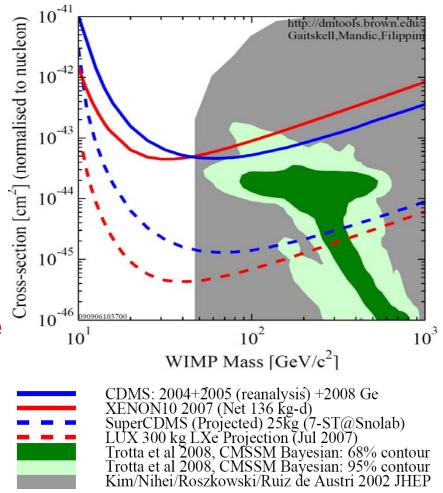


- For a WIMP, $m_X \sim 100$ GeV and $g_X \sim 0.6 \rightarrow \Omega_X \sim 0.1$
- Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter

WIMP DETECTION

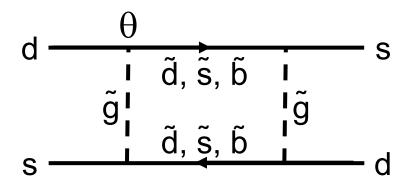
Correct relic density \rightarrow *Lower* bound on DM-SM interaction

Efficient scattering now (Direct detection)


DIRECT DETECTION

 CDMS will announce new results in 6 hours

- From correspondence with CDMS collaborators, I can say definitively that
 - CDMS has not discovered DM
 - or these people are in the wrong profession: they should be playing poker!

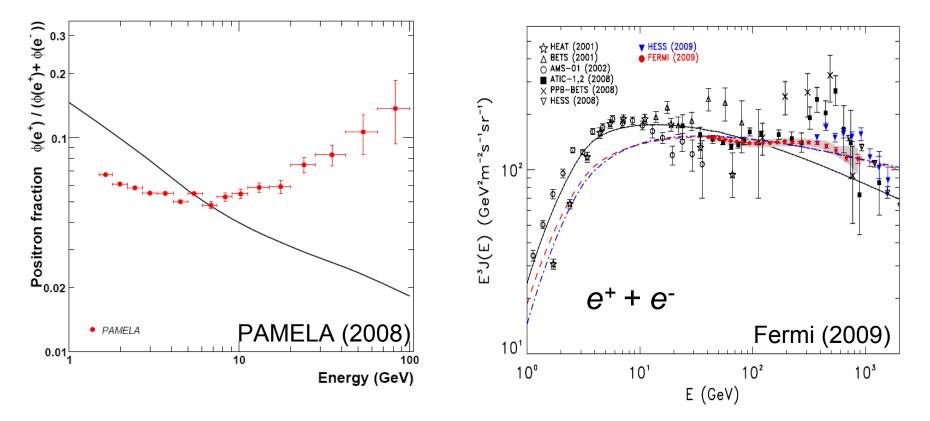

CURRENT STATUS

- Direct detection searches for nuclear recoil in underground detectors
- Spin-independent scattering is typically the most promising
- Theory and experiment compared in the (m_x, σ_p) plane
 - Expts: CDMS, XENON, ...
 - Theory: Shaded region is the predictions for SUSY neutralino DM what does this mean?

NEW PHYSICS FLAVOR PROBLEM

- New weak scale particles generically create many problems
- One of many possible examples: K-K mixing

- Three possible solutions
 - Alignment: θ small
 - Degeneracy: squark ∆m << m: typically not compatible with DM, because the gravitino mass is ~ ∆m, so this would imply that neutralinos decay to gravitinos
 - Decoupling: m > few TeV

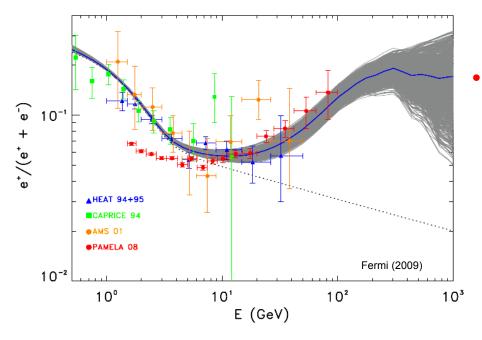

THE SIGNIFICANCE OF 10⁻⁴⁴ CM²

Decoupling is the strategy 10⁻⁴¹ http://dmtools.brown.edu/ Cross-section [cm²] (normalised to nucleon) adopted in many theories Gaitskell, Mandic, Filippin - focus point SUSY, inverted 10⁻⁴² hierarchy models, more minimal SUSY, 2-1 models, split SUSY,... 10⁻⁴³ This eliminates many diagrams, 10^{-44} collapses predictions 10⁻⁴⁵ χ; 10⁻⁴⁶ 10^{2} 10 WIMP Mass $[GeV/c^2]$ CDMS: 2004+2005 (reanalysis) +2008 Ge XENON10 2007 (Net 136 kg-d) SuperCDMS (Projected) 25kg (7-ST@Snolab) LUX 300 kg LXe Projection (Jul 2007) Trotta et al 2008, CMSSM Bayesian: 68% contour Trotta et al 2008, CMSSM Bayesian: 95% contour Kim/Nihei/Roszkowski/Ruiz de Austri 2002 JHEP h q

Universal prediction: $\sigma_p \sim 10^{-44} \text{ cm}^2$ 17 Dec 09

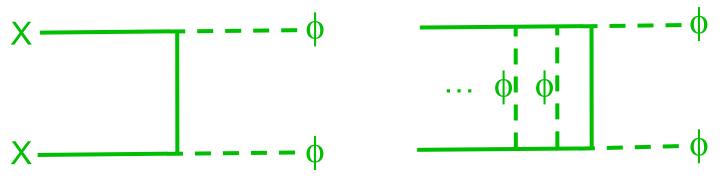
 10^{3}

INDIRECT DETECTION



Solid lines are the predicted spectra from GALPROP (Moskalenko, Strong)

ARE THESE DARK MATTER?


• Pulsars can explain PAMELA

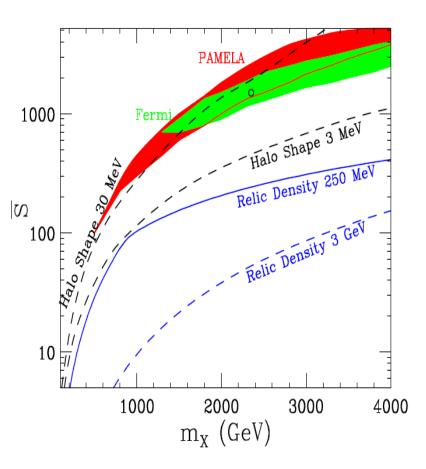
Zhang, Cheng (2001); Hooper, Blasi, Serpico (2008) Yuksel, Kistler, Stanev (2008) Profumo (2008) ; Fermi (2009)

- For dark matter, there is both good and bad news
 - Good: the WIMP miracle motivates excesses at ~100 GeV TeV
 - Bad: the WIMP miracle also tells us
 that the annihilation cross section
 should be a factor of 100-1000 too
 small to explain these excesses.
 Need enhancement from
 - astrophysics (very unlikely)
 - particle physics

SOMMERFELD ENHANCEMENT

 If S ~ 100-1000, seemingly can explain excesses, get around WIMP miracle predictions
 Cirelli, Kadastik, Raidal, Strumia (2008)

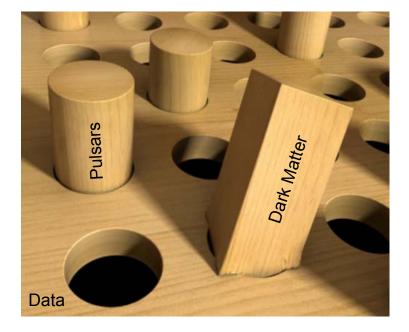
Arkani-Hamed, Finkbeiner, Slatyer, Weiner (2008)


Hisano, Matsumoto, Nojiri (2002)

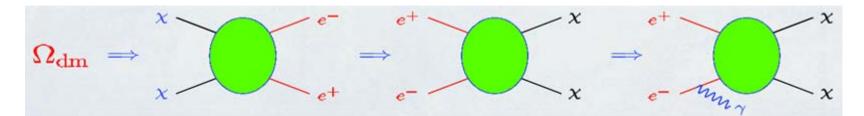
CONSTRAINTS ON SOMMERFELD ENHANCEMENTS

Feng, Kaplinghat, Yu (2009)

- Unfortunately, this scenario is internally inconsistent, at least in its original form
- Large S requires large α and small m_b
- This also maximizes the annihilation cross section; requiring that X be all the dark matter → upper bounds on S


Spergel, Steinhardt (1999); Miralda-Escude (2000) Ackerman, Buckley, Carroll, Kamionkowski (2009) Feng, Tu, Yu (2009), Buckley, Fox (2009)

WAYS OUT?


- X is only part of the dark matter: No, flux ~ n² <σv> S ~ α⁻¹, so the flux is always maximized by making X all the DM
- Resonant Sommerfeld enhancement: No
- Alternative production mechanisms, cosmologies at freezeout: Yes – but then why consider Sommerfeld enhancement?
- Boosts part Sommerfeld (~100), part astrophysical (~10): Maybe

Dent et al. (2009), Zavala et al. (2009)

WIMPS AT COLLIDERS: DIRECT PRODUCTION

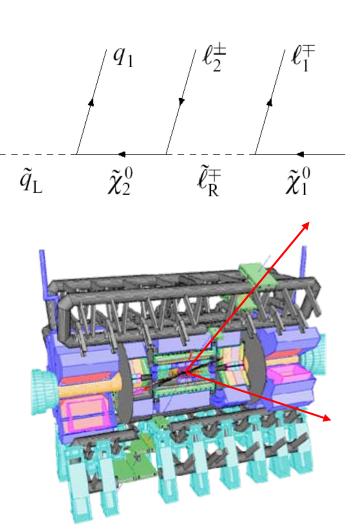
- $f \overline{f} \rightarrow \chi \chi$ This is invisible
- $f \overline{f} \rightarrow \chi \chi \gamma, \chi \chi j$ Mono-photon, monojet signal

- Signal may be detectable at a Linear e⁺e⁻ Collider

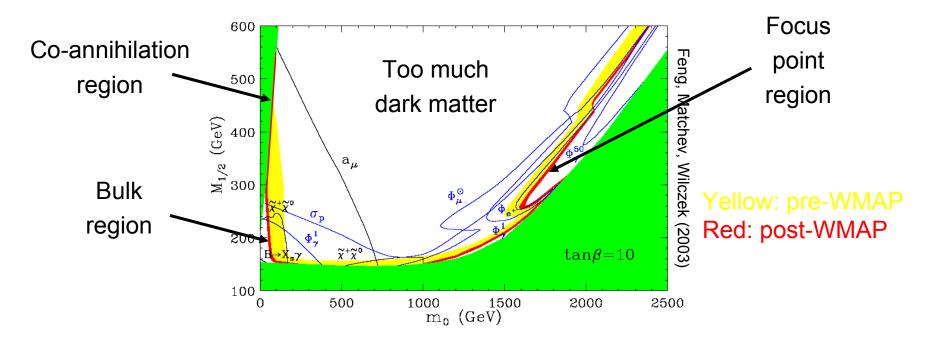
Birkedal, Matchev, Perelstein (2004)

– But not at the LHC: swamped by $q\overline{q} \rightarrow j Z, Z \rightarrow v\overline{v}$

Feng, Su, Takayama (2005)

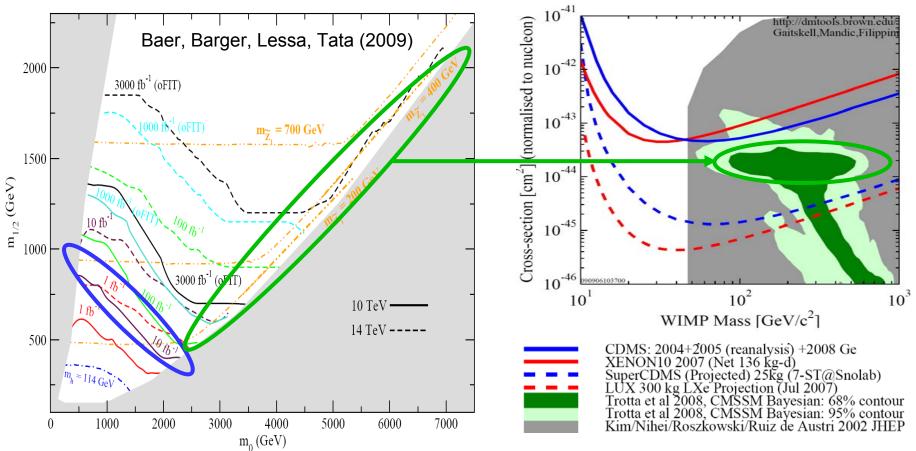

• WIMP studies at the LHC are therefore highly model-dependent

WIMPS AT COLLIDERS: INDIRECT PRODUCTION

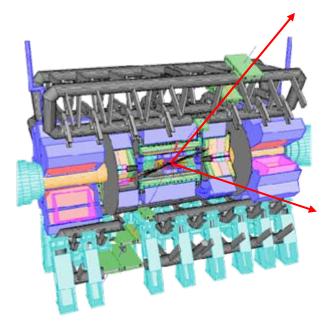

The classic WIMP: neutralinos
 from supersymmetry

Ellis et al. (1983); Goldberg (1983)

- Neutralino $\chi \in (\tilde{\gamma}, \tilde{Z}, \tilde{H}_u, \tilde{H}_d)$
- Produced in $\tilde{q}\tilde{q}$ pair production
 - − Each \tilde{q} → neutralino χ
 - -2χ 's escape detector
 - missing transverse momentum, energy

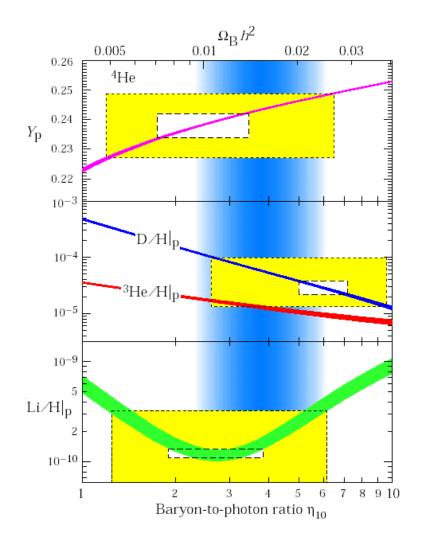


- For quantitative studies
 - pick a specific SUSY model, for example, mSUGRA
 - try to abstract general lessons
- $\Omega_{DM} = 23\% \pm 4\%$ stringently constrains models


 Assuming standard Big Bang, cosmology excludes many possibilities, favors certain regions

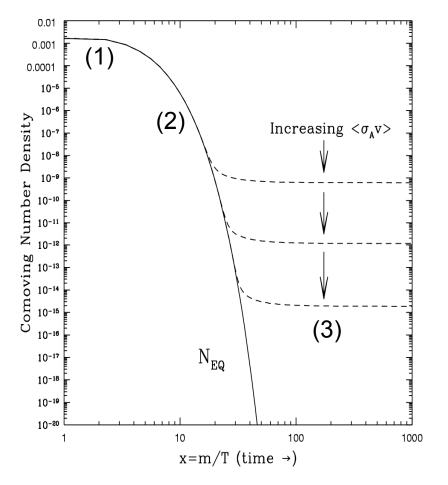
LHC, FP REGION, DIRECT DETECTION

- LHC with 1-10 fb⁻¹ probes all but the far focus point region
- FP (mixed gaugino-Higgsino) region $\rightarrow \sigma_{SI} \sim 10^{-44} \text{ cm}^2$
- LHC and direct detection experiments are complementary


WHAT IF THE LHC PRODUCES WIMPS?

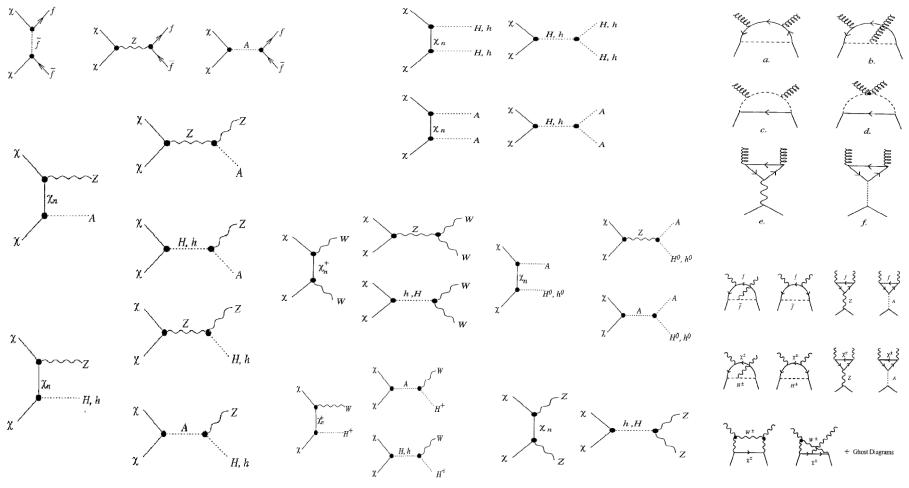
This is not the discovery of dark matter

- Particle leaves the detector: Lifetime > 10^{-7} s
- Particle is DM candidate: Lifetime > 10^{17} s What else can be done?

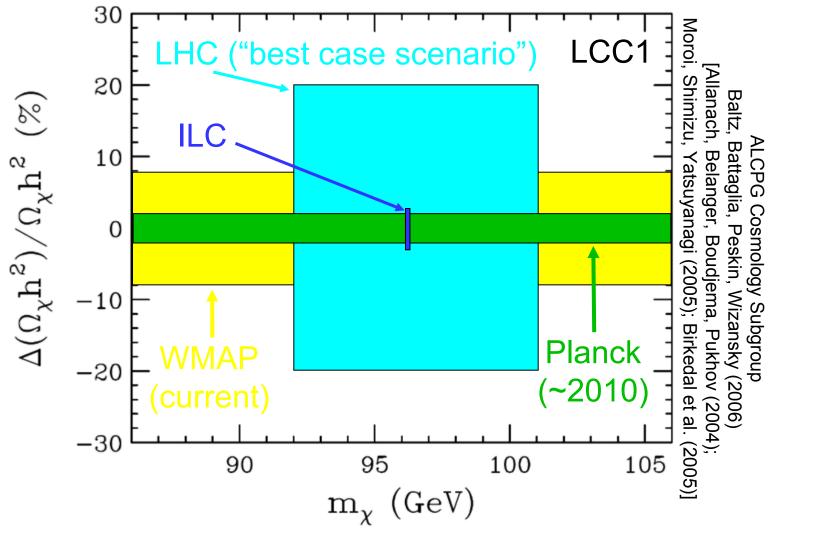

THE EXAMPLE OF BBN

- Nuclear physics → light element abundance predictions
- Compare to light element abundance observations
- Agreement → we understand the universe back to

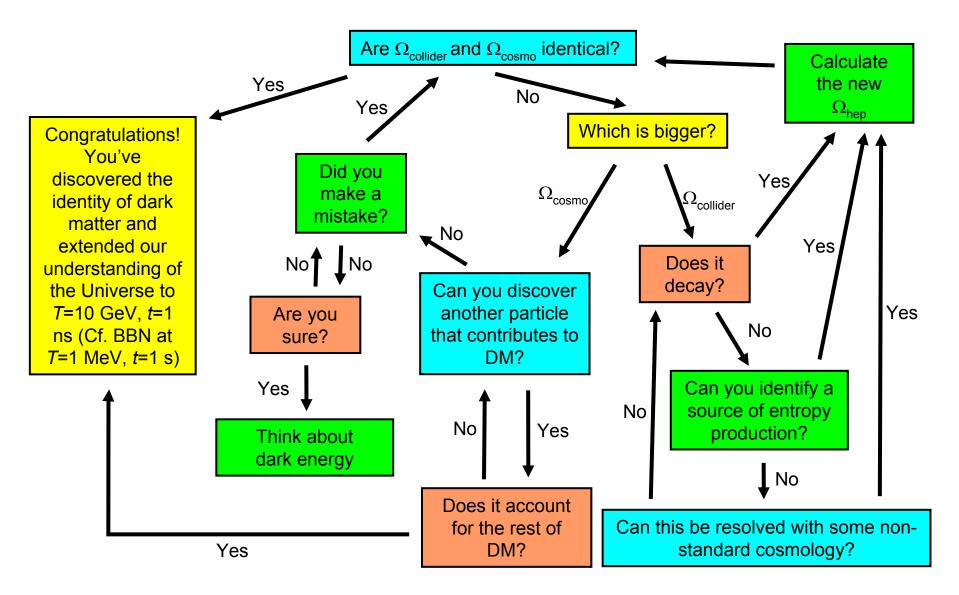
t ~ 1 sec


DARK MATTER ANALOGUE

- Particle physics → dark matter abundance prediction
- Compare to dark matter abundance observation


• How well can we do?

NEUTRALINO ANNIHILATION


Jungman, Kamionkowski, Griest (1995)

RELIC DENSITY DETERMINATIONS

% level comparison of predicted $\Omega_{\rm collider}$ with observed $\Omega_{\rm cosmo}$

IDENTIFYING DARK MATTER

BEYOND WIMPS

- WIMP characteristics
 - Colliders: missing E_T signals at colliders
 - Astroparticle physics: interesting direct and indirect detection signals
 - Astrophysics: cold, collisionless
- Is this true of all dark matter candidates? No.
 Is this true for all EWSB DM candidates? No!
 Is this true for all WIMP miracle-inspired candidates? No!!
- There are many other classes of candidates that preserve some (or even all) of the theoretical motivations of WIMPs, but have qualitatively different implications. In the rest of this talk, I will discuss a few examples.

GRAVITINOS

- SUSY: graviton $G \rightarrow$ gravitino \tilde{G}
- Mass: eV 100 TeV *r*

$$m_G = \frac{F}{\sqrt{3}M_p}$$

• Interactions: Gravitinos \tilde{G} couple particles to their superpartners $\mathcal{L} = -\frac{1}{E}j^{\alpha\mu}\partial_{\mu}G_{\alpha} + h.c.$

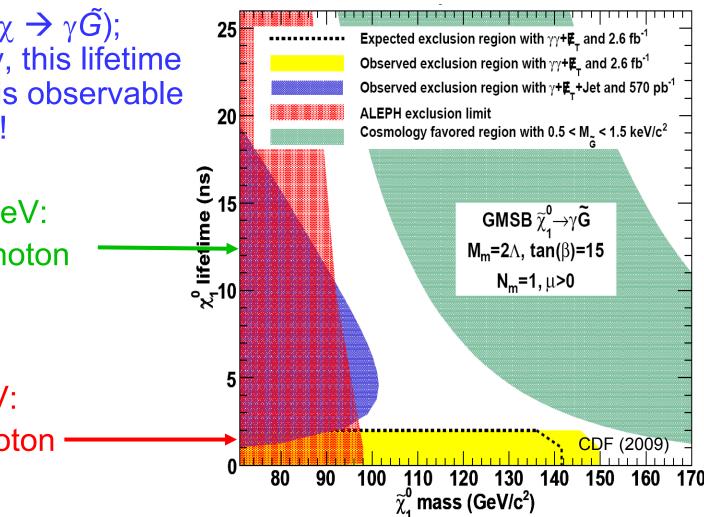
TeV gravitinos couple gravitationally; light gravitinos couple more strongly

LIGHT GRAVITINOS

- The original SUSY DM scenario
 - Universe cools from high temperature
 - gravitinos decouple while relativistic
 - − $n_{\tilde{G}} \sim n_{\text{thermal}}$, $\Omega_{\tilde{G}} h^2 \approx 0.1 \text{ (m}_{\tilde{G}} / 80 \text{ eV)}$ (cf. neutrinos)

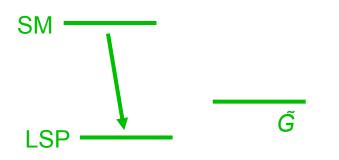
Pagels, Primack (1982)

- This minimal scenario is now excluded
 - Ω_{*G̃*} $h^2 \approx 0.1 \rightarrow m_{$ *G̃* $} \approx 80 \text{ eV}$
 - Gravitinos not too hot $\rightarrow m_{\tilde{G}}$ > few keV

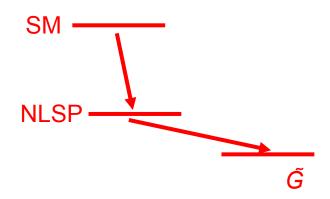

Viel, Lesgourgues, Haehnelt, Matarrese, Riotto (2005) Seljak, Makarov, McDonald, Trac (2006)

• Two ways out

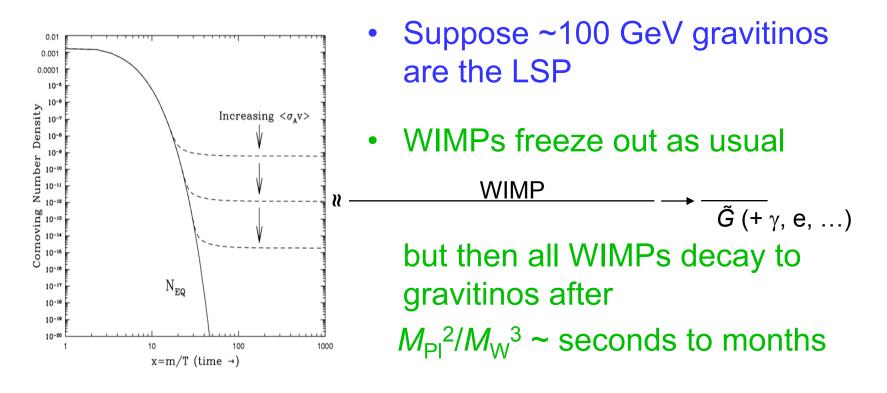
- Λ WDM: $m_{\tilde{G}}$ > few keV. Gravitinos are all the DM, but thermal density is diluted by low reheating temperature, late entropy production, ...
- Λ WCDM: m_{\tilde{G}} < 16 eV. Gravitinos are only part of the DM, mixed warm-cold scenario


LIGHT GRAVITINOS AT THE LHC

- $m_{\tilde{G}}$ fixes $\tau(\chi \rightarrow \gamma \tilde{G})$; remarkably, this lifetime difference is observable at colliders!
- $m_{\tilde{G}}$ > few keV: **Delayed** photon signatures
- m_{*c̃*} < 16 eV: **Prompt photon** signatures


HEAVY GRAVITINOS

Mass ~ 100 GeV; Interactions: ~ gravitational (superweak)


Assumption of most of literature

G LSP

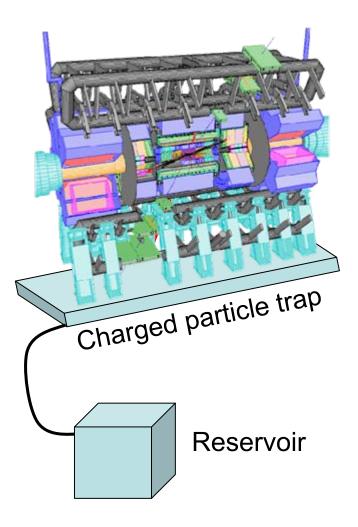
 Completely different cosmology and particle physics

SUPERWIMP RELICS

- SuperWIMPs share all WIMP motivations
 - − Naturally correct relic density: $m_{\tilde{G}} \sim m_{WIMP} \rightarrow \Omega_{\tilde{G}} \sim \Omega_{WIMP} \sim 0.1$
 - Same theoretical frameworks: ~1/2 of the parameter space (also axinos, KK gravitons, ...)

CHARGED PARTICLE TRAPPING

- SuperWIMP DM → metastable particles, may be charged, far more spectacular than misssing E_T (1st year LHC discovery)
- Can collect these particles and study their decays
- Several ideas
 - Catch sleptons in a 1m thick water tank (up to 1000/year)


Feng, Smith (2004)

Catch sleptons in LHC detectors

Hamaguchi, Kuno, Nakawa, Nojiri (2004)

Dig sleptons out of detector hall walls

De Roeck et al. (2005)

WHAT WE COULD LEARN FROM CHARGED PARTICLE DECAYS

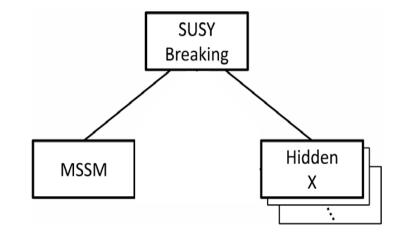
$$\tau(\tilde{l} \to l\tilde{G}) = \frac{6}{G_N} \frac{m_{\tilde{G}}^2}{m_{\tilde{l}}^5} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{l}}^2} \right]^{-4}$$

- Measurement of τ , $m_{\tilde{l}}$ and $E_{l} \rightarrow m_{\tilde{G}}$ and G_{N}
 - Probes gravity in a particle physics experiment
 - Measurement of G_N on fundamental particle scale
 - Precise test of supergravity: gravitino is graviton partner
 - Determines $\Omega_{\tilde{G}}$: SuperWIMP contribution to dark matter
 - Determines F : supersymmetry breaking scale, contribution of SUSY breaking to dark energy, cosmological constant

Hamaguchi et al. (2004); Takayama et al. (2004)

HIDDEN DARK MATTER

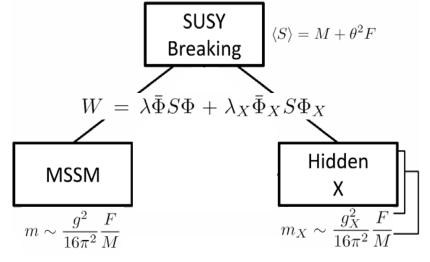
- Start over: What do we really know about dark matter?
 - All solid evidence is gravitational
 - Also solid evidence against strong and EM interactions
- A reasonable 1st guess: dark matter has no SM gauge interactions, i.e., it is *hidden*


Kobsarev, Okun, Pomeranchuk (1966); many others

- What one seemingly loses
 - Connections to central problems of particle physics
 - The WIMP miracle
 - Signals

Can hidden dark matter be rehabilitated?

CONNECTIONS TO CENTRAL PROBLEMS IN PARTICLE PHYSICS

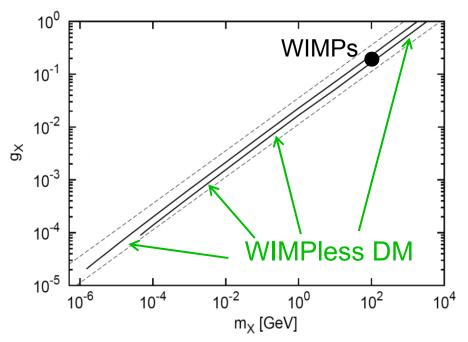

- We want hidden sectors
- Consider SUSY
 - Connected to the gauge hierarchy problem
 - Hidden sectors are already required to break SUSY

- Hidden sectors each have their own
 - particle content
 - mass scales m_{χ}
 - Interactions, gauge couplings g_X

- What can we say about hidden sectors in SUSY?
- Generically, nothing. But in SUSY models that solve the new physics flavor problem (gauge-mediated models, anomaly-mediated models) the superpartner masses are determined by gauge couplings

$$m_X \sim g_X^2$$

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$


THE WIMPLESS MIRACLE

Feng, Kumar (2008); Feng, Tu, Yu (2008)

• The thermal relic density constrains only one combination of g_X and m_X

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

 These models map out the remaining degree of freedom; candidates have a range of masses and couplings, but always the right relic density

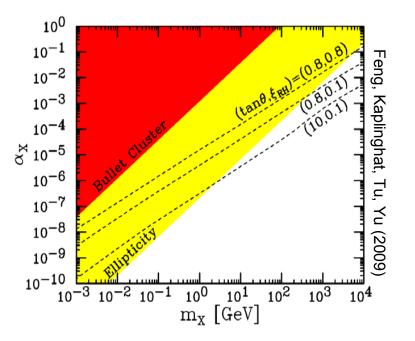
• This decouples the WIMP miracle from WIMPs (is this what the flavor problem is really trying to tell us?)

SIGNALS

How is hidden dark matter stabilized?

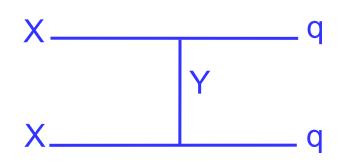
If the hidden sector is standard model-like, the most natural possibility is that the DM particle has hidden charge, and so is stabilized by charge conservation (cf. the electron)

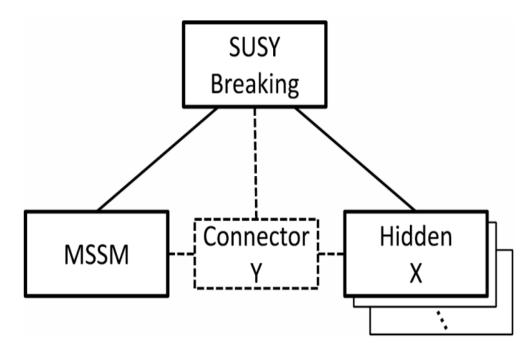
MSSM	Hidden, flavor-free MSSM
<i>m_w</i> sparticles, <i>W</i> , <i>Z</i> , <i>t</i> ∼GeV <i>q</i> , <i>l</i>	m_X sparticles, W, Z, q, I, $\tilde{\tau}$ (or τ)
$\begin{array}{c} \sim \text{Gev} q, \ r \\ 0 p, \ e, \ \gamma, \ \nu, \ \tilde{G} \end{array}$	0 g, γ, ν, G


DM-DM SIGNALS

- Such WIMPless DM self-interacts through Rutherford scattering
 - Highly velocity-dependent
 - constrained by existence of nonspherical halos, bullet cluster
- Related to "dark photons" where there is hidden U(1) only

Ackerman, Buckley, Carroll, Kamionkowski (2008)


 With dark SM, weak interactions can give the right Ω, lots of freedom


$$\frac{d\sigma}{d\Omega} = \frac{\alpha_X^2}{4m_X^2 v^4 \sin^4\left(\theta/2\right)}$$

DM-SM SIGNALS

 Alternatively, hidden DM may interact with normal matter through nongauge interactions

EXAMPLE

- Assume WIMPless DM X is a scalar, Y is a fermion, interact with b quarks
- May explain DAMA without contradicting CDMS, XENON
 - $-m_{X} \sim 5 \text{ GeV}$ (WIMPless miracle)
 - Naturally gives large σ_{SI} (chirality flip on heavy Y fermion line)
- Such Y's look like exotic 4th generation quarks, provide interesting targets for Tevatron, LHC

CONCLUSIONS

- WIMP miracle → fascinating interaction of LHC with cosmology; many specific realizations with greatly varying phenomenology and implications
- WIMPs imply missing $E_{\rm T},$ but there are also other candidates with similar motivations but even more striking signatures
 - Prompt or delayed photons
 - Heavy charged particles
 - Connector particles to hidden sectors
- LHC may have far-reaching cosmological implications soon