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Plan of talk

e Brief review of Quantum Criticality and Superconductivity
e Brief review of the “AdS/CFT correspondence”
¢ Phenomenological approaches to holographic materials

e String/M Theory models of superconductors

Reviews

e Quantum phase transitions: Sachdev

e AdS/CFT & superconductors: Hartnoll 09, Herzog 09




Thermal and quantum phase transitions

e At zero temperature a classical system cannot have second order phase
transitions (as there are no fluctuations).

e However a quantum system has quantum fluctuations even at zero T. These
may become correlated at long ranges even at zero T -- this is a critical
quantum phase transition (or QCP).




Example: Ising model in d=1
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So why are they interesting...?

e QCP ‘controls’ phase diagram (should have 2 relevant directions).

e Interesting real world materials have properties (eg. superconductivity) that
are conjectured to be described by a nearby QCP.

¢ \We may reformulate a d-dim’l quantum system at finite temperature as a
classical (1+d)-dim’l path integral in compact Euclidean time, radius 1/T.

e The anisotropy of (Euclidean) time and space means we expect Lifshiftz
scaling in general, with scaling coefficient ‘z’; £ ~ & — oo

e CFTforz=1

e The ‘Landau-Ginsberg-Wilson’ theory at the fixed point is now includes time.




Superconducting metal films ( ~ 1+2 dim’l)

e Conventional superconductors

e BCS theory: charged quasiparticles (Cooper pairs of electrons, eg. bound
by phonon exchange) coupled to EM - broken U(1) -> superconductivity

e Non-conventional / non BCS

e QCP may be important in understanding superconductor transition if it
occurs nearby. Then expect a LGW theory with emergent local U(1) gauge
field and associated charge current

e A nearby QCP may indicate strongly coupled quantum behaviour is
important.




Superconductors and Quantum Criticality

® Heavy fermion systems: eg. CePds S

e Existence of QCP is clear. However not clear that there is a weakly

coupled quasiparticle picture - although might be BCS (d-wave magnetic
pairing)
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Superconductors and Quantum Criticality

e Cuprates: eg. Las_;Sr,CuO,

¢ Existence of QCP less certain
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AdS/CFT: Decoupling of D3-branes

e D-branes are objects in open string perturbation theory that open strings end
on.

Closed string

Open string loop “ tree level !
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e Alternatively they are non-perturbative sources for closed stringseg. T ~1/gs

e For N D3-branes the open string low energy description is maximally
supersymmetric (1+3)-dim’l SU(N) YM, with ¢%,, = gs . In fact this is a CFT,
and the t’Hooft coupling is marginal A = Ng3-,, -

e The closed string ‘decoupling’ limit is where we focus on the same low energy
excitations that for open strings give the SYM.




AdS/CFT as a computational tool

e For N — 0o string quantum corrections are suppressed. Hence the closed
string description is a classical one of strings moving in a target space
created by the D3-branes.

R ~ \L/4

Ls

e Hence for large A supergravity well describes the theory. One finds the
vacuum geometry is simply AdSs x S°. Deformations are asymptotic to this.

e The curvature of the space, is governed by:

¢ Finite temperature gravity = black holes
¢ Real time dynamics involves solving the classical Einstein equations.

e Analysis of full supergravity is complicated. Can take a D-dim’l theory of
gravity possibly + other fields, which admits an AdS vacuum and then look at
deformations of this much simpler theory. One then says that this describes
some (D-1) dim’l CFT.

e \Whether such an approach is useful is unclear.




AdS/CFT

e The geometry AdSp  we can understand simply in terms of the
factor. This has a boundary, which is RY?~?

e \We may write the metric as; 452 = rn,detde” + —-

e Then 7 — o0 is the 'boundary’ of the geometry. The string theory (or
supergravity fields) need boundary conditions there when we consider
deforming about the vacuum.

h(O)(z) N (D (z)

r r2

e Ex. scalar (with conformal mass) deformations: h(r,z) =

e Specify ‘Dirichlet’ data r(®(z) and the solution then determines the
‘Neumann data’ 1V (z)

+ ...




AdS/CFT dictionary

Closed strings/gravity in AdSp <=3  CFT (SYM)on R%:P—2

‘Dirichlet’ data for fields O'®)(z) <=3 Sources for operator O(z)

g2 (z) Tw  ie. CFT lives on metric g\ (x)
local Diffeo Global Poincare invariance -> conservation
A©) () Jp ()
local U(1) gauge sym Global U(1) -> current conservation

‘Neumann’ data for fields O)(z) €=—=3  Vevs for same operator O(z)

<Jy>=AD@) < T, >= gV ()

Response of O (z) given <€—>»  2-ptcorrelator _ 0(0)0(z) >

a delta function source in 09 (x)
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¢ To study thermal plasma dynamics in a (D-1) dim’l CFT we write down a
simple phenomenological model (which is a truncation of usual AdS/CFT):

S = /de\/g(—A + R)
e Finite temperature: the vacuum is AdS-Schwarzschild

o 1
ds® = —g(r)dt® + §;;dx’dx’ + —dr? g(r) =r*—

g(r) r

e Deformations of this are supposed to describe the dynamics of the finite
temperature CFT (ie. thermal strongly coupled plasma).

e At large scales (compared to energy density) hydrodynamics of a conformal
fluid does indeed emerge from this model when classical gravity deformations

are considered. Bhattacharyya, Hubeny, Rangamani, Minwalla O7; Baier et al 07

e One can calculate transport properties at any scale (not just hydro limit!)




Model Il: Conductivity ol Horsog 07

¢ To study conductivity we require a current so we add a local bulk U(1):

1
S = /dDaj\/g <—A + R — ZF3”>

e The bulk operator A,(r, ) is dual to a conserved boundary current J,(z)
charged under a global U(1)

e Take the ‘Dirichlet’ A® = pdt and then the ‘Neumann’ part A®Y =< J >

e The vacuum is given by a charged AdS black hole: AdS-RN
. . 2 2
ds* = —g(r)dt® + §;;dx"dz" + Ldr2 g(r) = 4r% — 1 <4ri + a_) L

Tr

g(r) r r2
VR
T’_|_ T

* Hydro description is a charged fluid.

e Conductivity can be calculated at any scale (not only hydro limit).

e Much recent attention to Fermi surface: Lee08; Liu et al 09; Cubrovic et al 09 ; Faulkner et al 09




Gubser 08

Model lll:  Superfluidity in 1+2 Harinoll, Herzog, Horowiz 08

¢ To study superfluidity we require a 1+3 bulk theory with a charge current and
associated local U(1): A=—24, g=2, m?=—8

1
s= [ (R {R - 10K - Vi) VD) = A 4 2y
Dy = dx —iqAx

e Again the bulk operator A s dualto a global U(1) boundary current and we
will take the boundary data A® = pdt  and choose M =1 (breaks scale)

e Now X is a scalar charged under the bulk U(1). Dual to a complex scalar

operator 9x with dimension 2x = 2
NORC

0) _
e Then one finds X(7) =~ —+ "5 +... and we take Dirichlet data X =0
—0 <Oy >= X
e ‘Normal phase’ solution: AdS-RN soln before, X =
2
* ‘Broken phase’ solution:  ¢s? = =¥ g(r)dt? + ar” + r2dax? A= ¢(r)dt

g(r)
x(r) = &(r) {(r) eR




Model lll:  Superfluidity in 1+2

e Find for T < T, ~ 0.042 broken solutions: black holes with scalar "hair’

e Can check that free energy is minimized by broken phase

Singular solution
V<10 > 0'2‘6
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Model lll:  Superfluidity in 1+2

¢ Phase structure: normal phase for T>7.  broken phase for T <T.
e We may phase rotate any solution; x(r) = €”£(r)

e One can perform a hydro expansion again. For T >7T. one obtains charged
fluid as before. However, for T <T. the phase is dynamic and gives rise to
an additional Goldstone mode, ¢ , from the U(1) breaking giving a superfluid

component.
in progress Sonner, Withers, TW

e Note that the difference between a superfluid and superconductor is simply
whether the broken U(1) is local or global.

e Recent attention on Fermi surface Gubser et al 09 ; Faulkner et al 09




Balasubrahmanian, McGreevy 08
Herzog, Rangamani, Ross 08
Kachru et al 08

Models IV: z#1

e Much recent progress in extending to z =2 (Schrodinger sym) and general
Lifshitz scaling.

¢ Black holes can be found with exotic asymptotic geometries
¢ Holographic dictionary mapping can be understood Ross, Saremi 09
e Supercond uctivity Danielsson, Thorlacius 09

¢ Fermi surface Hartnoll, Polchinski, Silverstien, Tong 09




Denef, Hartnoll 09 ; Gauntlett, Kim, Varela, Waldram 09 ; Gauntlett, Sonner, TW 09

See also Gubser, Herzog, Pufu, Tesileanu 09
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e Take M2 or anti-M2 branes at tip of R? x CYs where ds*(CYg) = dr® + r?d(SE;)?
d(SE7)? = d(KEg)? +n®mn n=d+a da = 2J x5,

e In decoupling limit the geometry is, AdSs x SE7  with Ga = L vol(AdSy)

e For M2 branes have N=2 SCFT in 1+2 dim

e Then for §7 one finds KE; = CP? and enhanced susy N=8; CFT known
e For anti-M2 branes susy is broken; N=0 CFT in 1+2 dim

¢ These vacuum solutions are known as ‘skew-whiffed’

¢ They have been shown to be perturbatively stable

* Note for S” actually the theory is supersymmetric




M _Th eory em beddlng Gauntlett, Sonner, TW 09

e Deformations can be reduced to a consistent truncation of the full 11-d
supergravity. For anti-M2 branes we have found a 1+2 dim’l truncation;

1 (1 _ h2)3/2 3
S = d*z/=g|R — F, F* — Dx/?
167TG/ =g 1+3h2 " 2(1 — 4|x| s DXl
2 2
B 3 (Vh)? 24(—1+ h? + |x|?) /2h3+h A
2(1 — h2)? (1—2]x]2)2(1 — h?) 3/2 167rG 1+ 3h2

e Gravity, local U(1) gauge field, charged scalar A, =2 and also a neutral
relevant scalar » with A, =2

h( p) N ()
e Then h= +—t... and we fix Dirichlet data h‘\"/ = const
T T

g—T A— J X < Oy h < Oy,

e For h =0, and to linear order in X this reduces to phenomenological model




M-Theory behaviour: © =0

e For M #0 we find deformed AdS black holes with » scalar charge
e As T — oo these tend to AdS-Schwarzschild
e For T — 0 these become singular in the IR (finite distance, gap)

e The coupling h F A F means for h # 0 parity is broken

T
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M-Theory behaviour: @ =1

o For M9 <h®~0.35 have deformed AdS-RN for T > T.(A”) and broken
phase solutions for T < T,(h(®)

e However T.(h'%)—0 for O] = pe
e For T — 0 solutions are AdS, with x =+/2/3 inIR - Pope-Warner soln

e For 1M > h° have only deformed AdS-RN which are singular for T — 0
T

A
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Phase diagram

AdSy Skew-Whiffed QCP

Emergent IR
AdSs Pope-Warner




Summary

¢ 1+2 Quantum critical points with z=1 are described by relativistic CFTs.
e Other scalings are possible in AdS/CFT too!

e Such QCPs, which are typically strongly coupled, may help describe the
behaviour of exotic materials including high-T superconductors.

e AdS/CFT is an ideal tool which allows specific strongly coupled CFTs to be
found, and in certain regimes to be ‘solved’ -- at least in the sense of
thermodynamics, phase structure, transport.

e Do these CFTs describe real materials? -- probably not at present

e Do they describe materials near a QCP? -- unclear, but a possibility




