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Plan of talk

• Brief review of Quantum Criticality and Superconductivity

• Brief review of the “AdS/CFT correspondence”

• Phenomenological approaches to holographic materials

• String/M Theory models of superconductors

• Quantum phase transitions:  Sachdev

• AdS/CFT & superconductors:   Hartnoll 09,  Herzog 09

Reviews



Thermal and quantum phase transitions

• At zero temperature a classical system cannot have second order phase 
transitions (as there are no fluctuations).

• However a quantum system has quantum fluctuations even at zero T. These 
may become correlated at long ranges even at zero T -- this is a critical 
quantum phase transition (or QCP).



• Quantum Ising model

Example: Ising model in d=1
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QCP: a free fermion theory



Ising d>1
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So why are they interesting...?

• QCP `controls’ phase diagram (should have 2 relevant directions).

• Interesting real world materials have properties (eg. superconductivity) that 
are conjectured to be described by a nearby QCP.

• We may reformulate a d-dim’l quantum system at finite temperature as a 
classical (1+d)-dim’l path integral in compact Euclidean time, radius 1/T.

• The anisotropy of (Euclidean) time and space means we expect Lifshiftz 
scaling in general, with scaling coefficient ‘z’;

• CFT for z = 1

• The ‘Landau-Ginsberg-Wilson’ theory at the fixed point is now includes time.

ξ ∼ ξz
τ →∞



Superconducting metal films ( ~ 1+2 dim’l )

• Conventional superconductors 

• BCS theory:  charged quasiparticles (Cooper pairs of electrons, eg. bound 
by phonon exchange) coupled to EM - broken U(1) -> superconductivity

• Non-conventional / non BCS

• QCP may be important in understanding superconductor transition if it 
occurs nearby. Then expect a LGW theory with emergent local U(1) gauge 
field and associated charge current 

• A nearby QCP may indicate strongly coupled quantum behaviour is 
important.



Superconductors and Quantum Criticality

• Heavy fermion systems: eg.  

• Existence of QCP is clear. However not clear that there is a weakly 
coupled quasiparticle picture - although might be BCS (d-wave magnetic 
pairing)

CePd2Si2



Superconductors and Quantum Criticality

• Cuprates: eg.

• Existence of QCP less certain

La2−xSrxCuO4



AdS/CFT:  Decoupling of D3-branes

• D-branes are objects in open string perturbation theory that open strings end 
on.

• Alternatively they are non-perturbative sources for closed strings eg.

• For N D3-branes the open string low energy description is maximally 
supersymmetric (1+3)-dim’l SU(N) YM, with                 . In fact this is a CFT, 
and the t’Hooft coupling is marginal                  .

• The closed string `decoupling’ limit is where we focus on the same low energy 
excitations that for open strings give the SYM.

Open string loop
Closed string

tree level

g2
Y M = gs

λ = Ng2
Y M

T ∼ 1/gs



AdS/CFT as a computational tool

• For               string quantum corrections are suppressed. Hence the closed 
string description is a classical one of strings moving in a target space 
created by the D3-branes.

• The curvature of the space, is governed by:

• Hence for large      supergravity well describes the theory. One finds the 
vacuum geometry is simply                  . Deformations are asymptotic to this.

• Finite temperature gravity = black holes

• Real time dynamics involves solving the classical Einstein equations.

• Analysis of full supergravity is complicated. Can take a D-dim’l theory of 
gravity possibly + other fields, which admits an AdS vacuum and then look at 
deformations of this much simpler theory. One then says that this describes 
some (D-1) dim’l CFT.

• Whether such an approach is useful is unclear.

N →∞

R

ls
∼ λ1/4

λ

AdS5 × S5



AdS/CFT

• The geometry                  we can understand simply in terms of the           
factor. This has a boundary, which is

• We may write the metric as;

• Then             is the `boundary’ of the geometry. The string theory (or 
supergravity fields) need boundary conditions there when we consider 
deforming about the vacuum.

• Ex.  scalar (with conformal mass) deformations:

• Specify `Dirichlet’ data                and the solution then determines the 
`Neumann data’ 

r →∞

ds2 = r2ηµνdxµdxν +
dr2

r2

h(0)(x)
h(1)(x)

h(r, x) =
h(0)(x)

r
+

h(1)(x)
r2

+ . . .

AdSD

R1,D−2



AdS/CFT dictionary

Closed strings/gravity in CFT (SYM) on

`Dirichlet’ data for fields Sources for operator

g(0)
µν (x) Tµν ie.  CFT lives on metric g(0)

µν (x)

A(0)
µ (x) Jµ(x)

local Diffeo Global Poincare invariance -> conservation

local U(1) gauge sym Global U(1) -> current conservation

`Neumann’ data for fields Vevs for same operator

< Tµν >= g(1)
µν (x)< Jµ >= A(1)

µ (x)

2-pt correlator < O(0)O(x) >Response of                 givenÕ(1)(x)

a delta function source in Õ(0)(x)

Õ(0)(x)

Õ(1)(x)

O(x)

O(x)

AdSD R1,D−2



Model I:  Transport

• To study thermal plasma dynamics in a (D-1) dim’l CFT we write down a 
simple phenomenological model (which is a truncation of usual AdS/CFT):

• Finite temperature:  the vacuum is AdS-Schwarzschild

• Deformations of this are supposed to describe the dynamics of the finite 
temperature CFT (ie. thermal strongly coupled plasma).

• At large scales (compared to energy density) hydrodynamics of a conformal 
fluid does indeed emerge from this model when classical gravity deformations 
are considered.

• One can calculate transport properties at any scale (not just hydro limit!)

ds2 = −g(r)dt2 + δijdxidxi +
1

g(r)
dr2 g(r) = r2 − ε

r

S =
∫

dDx
√

g (−Λ + R)

Policastro, Starinets, Son   01

Bhattacharyya, Hubeny, Rangamani, Minwalla 07; Baier et al 07



Model II:  Conductivity

• To study conductivity we require a current so we add a local bulk U(1):

• The bulk operator               is dual to a conserved boundary current           
charged under a global U(1)

• Take the ‘Dirichlet’                    and then the `Neumann’ part   

• The vacuum is given by a charged AdS black hole:  AdS-RN

• Hydro description is a charged fluid. 

• Conductivity can be calculated at any scale (not only hydro limit).

• Much recent attention to Fermi surface:

Jµ(x)Aµ(r, x)

A(0) = µdt A(1) =< J >

ds2 = −g(r)dt2 + δijdxidxi +
1

g(r)
dr2

At = α
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Herzog, Kovtun, Sachdev 07
Hartnoll, Herzog 07

Lee 08; Liu et al 09; Cubrovic et al 09 ;  Faulkner et al 09 



Model III:   Superfluidity in 1+2

• To study superfluidity we require a 1+3 bulk theory with a charge current and 
associated local U(1):

• Again the bulk operator       is dual to a global U(1) boundary current and we 
will take the boundary data                      and choose              (breaks scale)

• Now       is a scalar charged under the bulk U(1). Dual to a complex scalar 
operator        with dimension 

• Then one finds                                        and we take Dirichlet data 

• `Normal phase’ solution:   AdS-RN soln before, 

• `Broken phase’ solution:   

χ

Dχ = dχ− iqAχ

A

A(0) = µdt

V (|χ|) = Λ + m2χ2

χ = 0

ds2 = e−β(r)g(r)dt2 +
dr2

g(r)
+ r2dx2

i

ξ(r) ∈ R

S =
∫

d4x
√

g

(
R− 1

4
F 2

µν − |Dχ|2 − V (|χ|)
) Λ = −24, q = 2, m2 = −8

χ(r) = ξ(r)

χ(r) =
χ(0)

r
+

χ(1)

r2
+ . . . χ(0) = 0

< Oχ >= χ(1)

µ = 1

∆χ = 2Oχ

A = φ(r)dt

Gubser 08
Hartnoll, Herzog, Horowitz 08



Model III:   Superfluidity in 1+2

• Find for                          broken solutions:  black holes with scalar `hair’

• Can check that free energy is minimized by broken phase

T < Tc ∼ 0.042
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Model III:   Superfluidity in 1+2

• Phase structure:  normal phase for                broken phase for

• We may phase rotate any solution;

• One can perform a hydro expansion again. For              one obtains charged 
fluid as before.  However, for             the phase is dynamic and gives rise to 
an additional Goldstone mode,      , from the U(1) breaking giving a superfluid 
component.

• Note that the difference between a superfluid and superconductor is simply 
whether the broken U(1) is local or global.  

• Recent attention on Fermi surface

T > Tc T < Tc

χ(r) = eiθξ(r)

T > Tc

T < Tc

θ

 in progress Sonner, Withers, TW

Gubser et al 09 ; Faulkner et al 09



Models IV: 

• Much recent progress in extending to            (Schrodinger sym)  and general 
Lifshitz scaling. 

• Black holes can be found with exotic asymptotic geometries

• Holographic dictionary mapping can be understood

• Superconductivity

• Fermi surface

z != 1

Balasubrahmanian, McGreevy 08
Herzog, Rangamani, Ross 08

Kachru et al 08

z = 2

Ross, Saremi 09

Danielsson, Thorlacius 09

Hartnoll, Polchinski, Silverstien, Tong 09



M-Theory embedding

• Take M2 or anti-M2 branes at tip of                    where 

• In decoupling limit the geometry is,                     , with  

• For M2 branes have N=2 SCFT in 1+2 dim

• Then  for       one finds                      and enhanced susy N=8; CFT known

• For anti-M2 branes susy is broken; N=0 CFT in 1+2 dim

• These vacuum solutions are known as `skew-whiffed’

• They have been shown to be perturbatively stable

• Note for        actually the theory is supersymmetric       

R1,2 × CY8 ds2(CY8) = dr2 + r2d(SE7)2

d(SE7)2 = d(KE6)2 + η ⊗ η η = dψ + a da = 2JKE6

S7 KE6 = CP 3

AdS4 × SE7 G4 = ± vol(AdS4)

S7

Denef, Hartnoll 09 ;   Gauntlett, Kim, Varela, Waldram 09  ; Gauntlett, Sonner, TW 09

See also Gubser, Herzog, Pufu, Tesileanu 09

And also Basu et al,  Erdmenger et al 08



M-Theory embedding

• Deformations can be reduced to a consistent truncation of the full 11-d 
supergravity. For anti-M2 branes we have found a 1+2 dim’l truncation;

• Gravity, local U(1) gauge field, charged scalar               and also a neutral 
relevant scalar      with 

• Then                                     and we fix Dirichlet data 

• For           , and to linear order in      this reduces to phenomenological model    

S =
1

16πG
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√
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Gauntlett, Sonner, TW 09



M-Theory behaviour:   

• For                we find deformed AdS black holes with     scalar charge

• As                these tend to AdS-Schwarzschild

• For               these become singular in the IR  (finite distance, gap) 

• The coupling                means for            parity is broken   

h

T →∞

T → 0

µ = 0

h(0) != 0

h F ∧ F h != 0

Second order QCP

h

T

SingularSingular AdS4

QCP

gapped, broken parity, 
+ helicity fastestgapped, broken parity, 

- helicity fastest

thermal, parity invariant

SW



M-Theory behaviour:   

• For                               have deformed AdS-RN for                       and broken 
phase solutions for

• However                       for                   

• For             solutions are             with                    in IR  - Pope-Warner soln

• For                   have only deformed AdS-RN which are singular for

µ = 1

T > Tc(h(0))

T < Tc(h(0))

Tc(h(0))→ 0

T → 0

T → 0 AdS4 χ =
√

2/3

|h(0)| < hc ∼ 0.35

|h(0)|→ hc

|h(0)| > hc

+hc−hc
h(0)

AdS4 PW



Phase diagram

Pope-WarnerAdS4

AdS4 Skew-Whiffed QCP

Emergent IR



Summary

• 1+2 Quantum critical points with z=1 are described by relativistic CFTs. 

• Other scalings are possible in AdS/CFT too!

• Such QCPs, which are typically strongly coupled, may help describe the 
behaviour of exotic materials including high-T superconductors. 

• AdS/CFT is an ideal tool which allows specific strongly coupled CFTs to be 
found, and in certain regimes to be ‘solved’ -- at least in the sense of 
thermodynamics, phase structure, transport.

• Do these CFTs describe real materials?  -- probably not at present

• Do they describe materials near a QCP?  -- unclear, but a possibility


