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Mathématiques de Jussieu)

Durham, 18 December 2009



Overview:

1. Periods, MZVs and motives

2. Parametric Feynman integrals

3. Higher-loop calculations

4. Outlook

1



Consider a pendulum, of length ℓ.

θ

m

ℓ

Its equation of motion is
..
θ + G

ℓ sin θ = 0.

By a simple substitution, its period is given by

an elliptic integral of the first kind:

T = 4

∫ 1

0

dx
√

(1 − x2)(1 − ρ2x2)

for some constant 0 < ρ < 1 which depends on

the initial conditions. Rewrite this as:

∫ ∞

0

∫ 1

0

8 dxdy

y2 + (1 − x2)(1 − ρ2x2)

so that the denominator is now a polynomial.
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Periods

A period is defined to be the (absolutely con-

vergent) integral of a rational differential form

over a domain given by polynomial inequalities:
∫

∆

P(x1, . . . , xn)

Q(x1, . . . , xn)
dx1 . . . dxn

where ∆ is defined by {fi(x1, . . . , xn) ≥ 0},
and fi, P, Q are polynomials with rational co-

efficients. What are the irreducible building

blocks of such period integrals?

I will consider two families of periods:

• Massless, single-scale Feynman integrals in

φ4 theory.

• Multiple Zeta Values, one of the simplest

possible families of periods.

I will try to explain why the two families are

the same up to small loop orders.
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Multiple Zeta Values

Let n1, . . . , nr ∈ N, and suppose that nr ≥ 2.

The multiple zeta value (MZV) ζ(n1, . . . , nr) is

defined by the convergent nested sum:

ζ(n1, . . . , nr) =
∑

0<k1<...<kr

1

k
n1
1 . . . knr

r
.

Its weight is the quantity w = n1 + . . . + nr.

To see that MZVs are periods, they can be

written as iterated integrals:

ζ(n1, . . . , nr) =
∫

0≤t1≤...≤tw≤1

dt1
ε1 − t1

. . .
dtw

εw − tw

where w is the weight, and

(ε1, . . . , εw) = (1,0, . . . ,0
︸ ︷︷ ︸

n1−1

, . . . ,1,0, . . . ,0
︸ ︷︷ ︸

nr−1

) .
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MZVs satisfy very many algebraic identities.

• Quasi-shuffle or stuffle relations. Example:

ζ(m)ζ(n) = ζ(m, n) + ζ(n, m) + ζ(m + n)

(
∑

k≥1

1

km

)(
∑

l≥1

1

ln

)

=

(
∑

k<ℓ

+
∑

ℓ<k

+
∑

k=ℓ

)
1

kmln

• Shuffle relations, valid for very general iter-

ated integrals. Decompose the product of

two simplices as a sum of smaller simplices.

This yields formulae such as:

ζ(2)ζ(2) = 2ζ(2,2) + 4ζ(1,3)

• Regularization-type identities, e.g., Euler’s

formula: ζ(1,2) = ζ(3).

And many more (e.g., Drinfeld’s pentagon equa-

tion, etc). The product of two MZVs can al-

ways be written, in several ways, as a linear

combination of multiple zetas.
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Weight 1 2 3 4 5

ζ(2) ζ(3) ζ(2)2 ζ(5)
ζ(2)ζ(3)

dim 0 1 1 1 2

Weight 6 7 8

ζ(2)3 ζ(7) ζ(2)4

ζ(3)2 ζ(2)ζ(5) ζ(3)ζ(5)

ζ(2)2ζ(3) ζ(2)ζ(3)2

ζ(3,5)
dim 2 3 4

Let dk be the dimension in weight k. Zagier

conjectured that

dk = dk−2 + dk−3 .

But it is not known if

ζ(5)

ζ(2)ζ(3)
/∈ Q

There is a more precise conjecture for the di-

mension in each weight and depth due to Broad-

hurst and Kreimer.
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Transcendence Results

Euler proved that ζ(2) = π2

6 and more generally

that ζ(2n) is a rational multiple of π2n.

The numbers π, ζ(3), ζ(5), ζ(7), . . . are conjec-

tured to be algebraically independent over Q.

In particular, they should be transcendental.

Theorem 1. (Lindemann) π is transcendental.

Theorem 2. (Apéry 1978) ζ(3) is irrational.

Theorem 3. (Rivoal 2000) Infinitely many odd

zetas ζ(2n + 1) are irrational.

It is still not known whether ζ(5) is irrational,

but it is known that one of the four num-

bers {ζ(5), ζ(7), ζ(9), ζ(11)} must be irrational.

(Zudilin, Rivoal,. . . )
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Lie algebra interpretation

Let L = Q[e3, e5, . . . , ] denote the free Lie al-

gebra generated by one element in every odd

degree. Add a generator e2 which commutes

with all the others to get:

F = Q[e2] ⊕L .

The underlying graded vector space is gener-

ated by, in increasing weight:

e2, e3, e5, e7, [e3, e5], e9, [e3, e7], . . .

Let UF be its universal enveloping algebra.

Conjecture 4. The algebra of multiple zetas

is isomorphic to the dual of UF.

In particular, there should be no algebraic re-

lations between MZVs of different weights.

The dimensions in graded weight k of UF are

given by the same dk, where dk = dk−2 + dk−3.
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This conjecture comes from the theory of mixed

Tate motives over Z, which form a category

isomorphic to the category of representations

of the previous Lie algebra.

Theorem 5. (Terasoma, Goncharov, Deligne-

Goncharov) The dimension of the space of

MZVs in weight k is bounded above by the

numbers dk satisfying Zagier’s recurrence.

It is not known how to reduce any given MZV

to some suitable basis of MZVs.

It is not known if the double shuffle (or any

other given set of) relations suffice.

But, this has been verified numerically to high

weights by Zagier,Broadhurst, . . . , Minh-Petitot,

. . . , Broadhurst-Blümlein-Vermaseren.
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The motivic theory suggests that there should

exist a Galois theory of periods, in the same

way that there is a Galois theory of algebraic

numbers. There is a large pro-algebraic group

which should act on the set of all periods.

In particular, we should get a conjectural co-

product structure on MZVs. Examples:

∆ζ(n) = 1 ⊗ ζ(n) + ζ(n) ⊗ 1

∆ζ(3,5) = 1⊗ζ(3, 5)−5 ζ(3)⊗ζ(5)+ζ(3, 5)⊗1

This should have relevance to QFT calcula-

tions: Feynman amplitudes should be linear

combinations of MVZs which are ‘simple’ with

respect to ∆.
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II. Reminder on parametric integrals

We can always reduce Feynman integrals to

parametric form using the Schwinger trick.

Let G be a graph with h loops. Let αe be

the Schwinger parameter of each edge e of G.

The graph polynomial, or first Symanzik poly-

nomial, of G is

ΨG =
∑

T⊂G

∏

e/∈ET

αe

where the sum is over all spanning trees T of

G. The second Symanzik polynomial of G is

ΦG =
∑

S

∏

e/∈S

αe(q
S)2

where the sum is over cut spanning trees S,

and qS is the moment flow through the cut.

Up to (omitted) Γ-factors, the general shape

of parametric Feynman integrals is:

I =
∫

[0,∞]EG

∏

e αae−1
e Ψ

a−(h+1)d/2
G

(ΨG
∑

e m2
eαe − ΦG)a−hd/2

δ(
∑

e
αe−1)
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where each propagator is raised to the power

ae and a =
∑

e ae.

We only consider the massless case of graphs

with trivial momentum dependence (a multiple

of a power of q2). To ensure convergence, we

say that G is primitively divergent if

• hG = 2|EG|

• hγ < 2|Eγ| for all strict subgraphs γ ⊂ G.

In this case the residue can be simply written

IG =

∫ ∏

e dαe

Ψ2
G

δ(
∑

αe − 1)

which converges absolutely. By a change of

variables, this can be written

IG =
∫

[0,∞]N−1

dα1 . . . dαN−1

Ψ2
G

∣
∣
∣
∣
αN=1

for some choice of edge N .



III. Higher loop calculations

Consider massless single-scale integrals in φ4

theory. For example, the master 2-loop dia-

gram on the left, with external momentum q.

4

3

6
2

1

5

45

1 2

3

The dressed Feynman integral is:

∫ ∫
dDk1dDk2

k
2a1
1 k

2a2
2 (k1 − k2)

2a3(k2 − q)2a4(k1 − q)2a5
,

where ai = 1 + ni ε, where ni are positive inte-

gers, and D = 4 − 2ε.

By a well-known trick, it suffices to compute

the momentumless Feynman integral of the

graph on the right obtained by closing up the

external edges.

12



Likewise, the wheel with 4 spokes is the unique

primitive-divergent graph at 4 loops.

1 2

4 3

6

5

7

8

7

1

4

2

3

5

6

4 2

8 5

7 6

3

It computes the master integrals for the two

3-loop topologies on the right.

Theorem 6. The coefficients in the Taylor ex-

pansion with respect to ε are multiple zetas, for

all graphs obtained by breaking open a planar

primitive-divergent graph with ≤ 6 loops, with

any dressing on its edges, in 4 dimensions.

This theorem also holds for some infinite fam-

ilies of graphs obtained by splitting triangles.

The 3-loop case (previous slide) was proved

by Bierenbaum and Weinzierl, using Mellin-

Barnes methods.
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There are 3 primitive divergent at 5 loops:

5P5R 5NP

They break apart to give the following 4-loop

topologies:

5P 5R

5NP
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For the non-planar topology at 5 loops, and

the following non-planar graphs at 6 loops:

we have the following result:

Theorem 7.The previous theorem holds, where

you replace multiple zeta values with multiple

polylogarithms evaluated at 6th roots of unity.

The method of proof is by integrating directly

in parametric space.

It gives an algorithm for the symbolic compu-

tation of the Taylor coefficients, and probably

works for all graphs up to 7 loops.

The Massless higher loop 2 point function,

Communications in Math. Physics 2009
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Methods

We illustrate the idea behind the method by

showing how to compute the residue:

IG =

∫

[0,∞]N−1

dα1 . . . dαN−1

Ψ2
G

∣
∣
∣
∣
αN=1

In the general, dressed, case, the numerator

will be a polynomial in αi, logαi and logΨG.

This won’t affect the method significantly.

Let EG be the reduced incidence matrix of the

graph G. Its entries are 0,1,−1 and depends

on various choices (orientation,. . . ). Let

MG =











α1
. . . EG

αeG

−TEG 0











It follows from the Matrix-Tree theorem that

the graph polynomial ΨG = detMG.
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Dodgson polynomials

We need to generalise: define, for any subsets

of edges I, J, K of G such that |I| = |J |,

Ψ
I,J
G,K = detMG(I, J)

∣
∣
∣
∣
αk=0,k∈K

were MG(I, J) denotes the matrix MG with rows

I and columns J removed. We call Ψ
I,J
G,K the

Dodgson polynomials of G.

The key to computing the Feynman integrals

is to exploit the many identities between the

polynomials Ψ
I,J
G,K. We have:

• The contraction-deletion formula:

Ψ
I,J
G,K = Ψ

Ie,Je
G,K αe + Ψ

I,J
G,Ke

We have Ψ
Ie,Je
G,K = Ψ

I,J
G\e,K

(deletion of e),

and Ψ
I,J
G,Ke = Ψ

I,J
G/e,K

(contraction of e).
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• General determinantal identities such as:

Ψ
I,J
G,KabxΨ

Iax,Jbx
G,K −Ψ

Ix,Jx
G,KabΨ

Ia,Jb
G,Kx = Ψ

Ia,Jx
G,KbΨ

Ix,Jb
G,Ka

or Plücker-type identities such as:

Ψ
ij,kl
G,K − Ψ

ik,jl
G,K + Ψ

il,jk
G,K = 0

• Graph-specific identities. If, for example,

K contains a loop, then Ψ
I,J
G,K = 0, and

many more complicated examples.

Compute the Feynman integral in parametric

form by integrating out one variable at a time.

By the contraction-deletion formula, we can

write Ψ = Ψ1,1α1 + Ψ1. Therefore

IG =

∫ ∞

0

dα1 . . . dαN−1

Ψ2

can be written
∫ ∞

0

dα1 . . . dαN−1

(Ψ1,1α1 + Ψ1)
2

=

∫ ∞

0

dα2 . . . dαN−1

Ψ1,1Ψ1

18



By contraction-deletion, the polynomials Ψ1,1

and Ψ1 are linear in the next variable, α2:

Ψ1,1 = Ψ12,12α2 + Ψ
1,1
2 ,

Ψ1 = Ψ
2,2
1 α2 + Ψ12

We can write the previous integral
∫ 1

Ψ1,1Ψ1
as

∫ ∞

0

dα2 . . . dαN−1

(Ψ12,12α2 + Ψ
1,1
2 )(Ψ

2,2
1 α2 + Ψ12)

Decompose into partial fractions and integrate

out α2. This leaves an integrand of the form

logΨ
1,1
2 + logΨ

2,2
1 − logΨ12,12 − logΨ12

Ψ
1,1
2 Ψ

2,2
1 − Ψ12,12Ψ12

At this point, we should be stuck since the de-

nominator is quadratic in every variable. Mirac-

ulously, there is an identity due to Dodgson:

Ψ
1,1
2 Ψ

2,2
1 − Ψ12,12Ψ12 = (Ψ1,2)2
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So after two integrations we have
∫ dα1dα2

Ψ2

=
logΨ

1,1
2 + logΨ

2,2
1 − logΨ12,12 − logΨ12

(Ψ1,2)2

We can then write Ψ1,2 = Ψ13,23α3+Ψ
1,2
3 and

keep integrating out variables. . .

As long as we can find a Schwinger coordinate

αi in which all the terms in the integrand are

linear, then we can always perform the next in-

tegration. This requires choosing a good order

on the edges of G.

In this case, the integral is expressible as mul-

tiple polylogarithms:

Lin1,...,nr(x1, . . . , xr) =
∑

1≤k1<...<kr

x
k1
1 . . . xkr

r

k
n1
1 . . . knr

r

typically evaluated at arguments Ψ
I,J
G,K. When

this process terminates, the Feynman integral

is expressed as values of multiple polylogarithms

evaluated at 1 (or roots of unity).

20



G is linearly reducible if this integration process

terminates, i.e., we can find a variable with

respect to which all the arguments are linear.

Most of the terms which occur are of the form

Ψ
I,J
G,K which are linear in every variable. How-

ever, this is not always the case. The first ob-

struction which can occur is the five invariant,

defined for any five edges i, j, k, l, m in G:

5Ψ(i, j, k, l, m) = ±det




Ψ

ij,kl
m Ψijm,klm

Ψ
ik,jl
m Ψikm,jlm





This is quadratic in the general case: i.e. we

start to run out of identities!

But if i, j, k, l, m contains a triangle, then one

of the matrix entries, say Ψ
ik,jl
m vanishes, and

5Ψ(i, j, k, l, m) factorizes into a product

Ψijm,klmΨik,jl
m ,

and so we can keep on going...
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The first non-trivial 5-invariants occur for the

non-planar graphs K5 (fewest vertices, left)

and K3,3 (fewest edges, right):

4

10

1

2

67

5

84

3
9

1

6

8

9

7

3

2

5

For example, the 5-invariant 5ΨK3,3
(1,2,4,6,8)

for the graph on the right is given by:

α5α2
9 + α3α5α9 + α5α7α9 + α3α5α7 − α3α7α9

It turns out that these graphs are still linearly

reducible (just choose a more intelligent order

in which to integrate out the edges).

The first serious problems occur at 8 loops.
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Summary

Consider the partial Feynman integrals

Ii
G(αi+1, . . . , αn) =

∫

[0,∞]i

dα1 . . . dαi

Ψ2
G

This is a function of the Schwinger parame-

ters αi+1, . . . , αn. Compute its Landau variety.

Typically it is given by the zeros of the poly-

nomials Ψ
I,J
G,K = 0. In this case Ii

G can be

expressed in terms of multiple polylogarithms,

and hence we get multiple zetas. In the general

case, we get non-trivial 5 (and higher) invari-

ants, and we do not expect MZVs.

On the periods of some Feynman Integrals,

arxiv:0910.0114v1

A similar idea should also work for massive

Feynman diagrams with more than one exter-

nal momenta at small loop orders (in progress)
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Residues

We can say a lot more about the leading term,

or residues, of G.

First of all, at small loop orders (≤ 6) they will

be integer linear combinations of MZVs.

Weights. The typical graph has transcendental

weight 2 × loops − 3. This is the case for the

left and middle graphs below:

6ζ(3) 20ζ(5) 36ζ(3)2

The graph on the right has 5 loops and should

also have weight 2 × 5 − 3 = 7. But it has

weight 6. There is a weight drop.
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Theorem 8. (Joint with Karen Yeats)

a). A 2-vertex reducible graph has weight drop

b). If G′ is obtained from G by splitting a

triangle, then the weight of G is equal to the

weight of G′.

A

G′

B

C

D

G

A

D

B

C

This theorem predicts almost all the weight

drops up to 7 loops.

What is the physical meaning of the weight

drop? Weight drop graphs should play a spe-

cial role in the perturbative expansion.
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Theorem 9. (with O. Schnetz). Consider the

following 8-loop graph obtained by gluing the

two sets of white vertices together. It gives

rise after 12 reductions to a denominator which

defines a singular K3 surface.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Therefore we should not expect the residue to

be a multiple zeta value.
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1. MZVs and periods have a rich structure

which is explained by the theory of motives.

This gives new ideas such as the coproduct or

weight, which should be relevant to physics.

2. There is an algorithm for computing higher-

loop massless single-scale Feynman integrals

directly in parametric form.

3. The combinatorial reasons for the appear-

ance of MZVs in loop calculations, and more

precise information such as the weight, are

starting to become apparent.

4. Similar ideas should work for massive and

many scale integrals at small loop orders.
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