Tevatron:

Recent Results and Prospects

Terry Wyatt

Particle Physics Group University of Manchester

on behalf of the CDF and DØ collaborations

<u>Overview</u>

- Recent highlights:
 - $-M_{vv}$
 - Observation of single (electroweak) top production
 - Higgs searches
- A very broad programme
 - B, QCD, EW (incl. top), BSM Searches
 - (50 journal publications, 30 PhDs, per annum, per experiment)
 - that is now at its peak of productivity
 - and over the next couple of years faces rather little competition from the LHC experiments
- Prospects

PLEASE ASK QUESTIONS AS WE GO ALONG!!!

The Fermilab Tevatron Collider

1992-95 Run I:

∫Ldt ~ 0.1 fb⁻¹, 1.8 TeV Discovered the t quark

Major accelerator/detector upgrades (UK groups joined CDF/DØ in 1998/1999) 2002-05 Run IIa:

∫Ldt ~ 1.6 fb⁻¹, 1.96 TeV

Further upgrades

2006-10 Run IIb: (2011 run very likely) $\int Ldt \sim 9 \text{ fb}^{-1}$ ($\int Ldt \sim 12 \text{ fb}^{-1}$)

Integrated Luminosity History

Average DØ data taking efficiency since April 2002 is 89%!

η = 0

Muon Scintillators

Shielding

Muon Chambers

 $\eta = -\ln(\tan\theta/2)$

η = 2

η = 3

 $\eta = 1/$

CDF detector highlight

- Large volume, high precision, charged particle tracker
 - 9-layer silicon tracker
 - 96-layer drift chamber
 - 1.4 m outer radius

DØ detector highlight

- Liquid Argon/Uranium calorimeter
 - longitudinal shower sampling
- High acceptance, low background, muon system
 - 0.5 m outer radius for DØ central tracker!

Producing W and Z in $p\overline{p}$

Hadron collider is a difficult environment!

- proton is a composite object
 - PDFs (Parton Distribution Functions)
 - proton remnants, gluon bremsstrahlung
- huge total cross section
 - ~12 collisions per bunch crossing at design luminosity! (every 396 ns)
 - backgrounds
 - trigger

Select ~ 10⁶ tagged W $\rightarrow \ell_V$ and ~ 10⁵ Z⁰ $\rightarrow \ell^+ \ell^-$ events per fb⁻¹

EW Cross Sections at the Tevatron

Signatures of W and Z Production at the Tevatron

- $Z \rightarrow \ell^+ \ell^-$: pair of charged leptons:
 - high p_T
 - isolated
 - opposite-charge
- peak in $\ell^+\ell^-$ invariant mass

Signatures of W and Z Production at the Tevatron

- $Z \rightarrow \ell^+ \ell^-$: pair of charged leptons:
 - high p_T
 - isolated
 - opposite-charge
- peak in $\ell^+\ell^-$ invariant mass

- $W \rightarrow \ell \upsilon$: single charged lepton:
 - high p_T
 - isolated
- E_T^{miss} (from v)
 - cannot measure longitudinal υ
- peak in "transverse mass"

transverse mass: $m_T = \sqrt{2p_T^{\ l}p_T^{\ v}(1-\cos\phi_{lv})}$

Signatures of W and Z Production at the Tevatron

Measuring the W Mass

- Use Monte Carlo samples to generate $m_{\rm T}$ distribution expected for different values of $m_{\rm W}$
 - "templates"
- Need to simulate accurately:
 - production and decay of W
 - passage of produced particles through the detector
 - signals produced in the detector
- Need to understand precisely:
 - lepton p_T scale and resolution
 - initial and final state bremsstrahlung
 - longitudinal motion of W along beam direction

<u>W Mass in W→eυ (DØ)</u>

- 1 fb⁻¹: ~500k W \rightarrow ev events, ~19k Z \rightarrow e⁺e⁻ events
- The main challenge:
 - Measure electron energy response at better than per mille level
 - Including dependence on energy, $|\eta|$, etc.
 - Including effect of nearly 4 X_{o} dead material in front of calorimeter
 - Calibrate using $Z \rightarrow e^+e^-$ events making use of information from:
 - Four samplings in depth in EM calorimeter, $|\eta|$ dependence
 - Divide $Z \rightarrow e^+e^-$ into 15 sub-samples in η_1 vs. η_2

Blind Analysis!

<u>W Mass in W→eυ (DØ)</u>

- 1 fb⁻¹: ~500k W \rightarrow ev events, ~19k Z \rightarrow e⁺e⁻ events
- The main challenge:
 - Measure electron energy response at better than per mille level
 - Including dependence on energy, $|\eta|$, etc.
 - Including effect of nearly 4 X_o dead material in front of calorimeter
 - Calibrate using $Z \rightarrow e^+e^-$ events making use of information from:
 - Four samplings in depth in EM calorimeter, $|\eta|$ dependence
 - Divide $Z \rightarrow e^+e^-$ into 15 sub-samples in η_1 vs. η_2
- Shower to shower fluctuations are significant
- Fraction of shower energy deposited in EM1,2 layers helps compensate partially for energy lost in dead material

Electron Energy Response Calibration with $Z \rightarrow e^+e^-$

 Dead material known to ±0.01X₀! • $E_{\text{measured}} = \alpha \times E_{\text{true}} + \beta$

- Use energy spread of electrons in Z decay to constrain α and β
- Uncertainties on α and β translate to $\Delta m_W = 34$ MeV
 - By far the largest single uncertainty
 - Dominated by $Z \rightarrow e^+e^-$ statistics
 - so will improve with more data

W Mass Fits

80

- Combination of fits to m_T , p^e_T and MET: ۲
 - m_w = 80.401 ± 0.021 (stat) ± 0.038 (syst) GeV
- World's most precise single-experiment m_w measurement
- Tevatron average M_w now slightly more precis than LEP average
- Energy scale uncertainties
 - fairly uncorrelated between CDF and DØ
 - dominated by available number of Z candidates!

Summary of EW Data from LEP/SLC

- value depends on m_H

m_W and m_t (compared to m_H)

- Data prefer a light Higgs!
- $m_{H} = 87^{+35}_{-26} \text{ GeV}$ $m_{H} < 157 \text{ GeV} (@95\% \text{CL})$

19

Prospects for M_W

• CDF analysis of 2.3 fb⁻¹ data set already well advanced

• Calibrate tracker and p_T scale and resolution

- Calibrate MC description of material in tracker
 - Because of bremsstrahlung in detector material p (track) tends to be smaller than E (calorimeter)

Prospects for M_W

- Expected statistical uncertainty ΔM_W ≈ 11 MeV
 - (CDF e+µ 2.3 fb⁻¹)
- N.B. Current theoretical uncertainties:
 - $-\Delta M_{W}(PDF) \approx 10 \text{ MeV}$
 - $-\Delta M_W$ (QED radiative corrections) $\approx 10 \text{ MeV}$
- will become dominant unless improved in the long term

- u quark PDF is harder than d quark PDF
- W⁺ (W⁻) tends to be boosted along proton (antiproton) direction
- asymmetry = $(N^{+}-N^{-})/(N^{+}+N^{-})$
- We actually observe the charged lepton
- W decay partially washes out asymmetry

- Experiments publish measurement in different form
 - Charged lepton charge asymmetry in different electron p_T bins (DØ)
 - Inclusive W boson charge asymmetry (CDF)
- MSTW and CTEQ have problems to incorporate both CDF and DØ data into their global PDF fits

• CDF have re-analyzed their data (stat. uncertainties only) to allow a direct comparison with DØ

- The experiments agree!
- The problem looks to be in the theory!

Observation of Electroweak Single Top Production

• The most direct way to study the W \rightarrow tb vertex!

• But observing "candidate events" does not, in itself, constitute a "discovery"!

Backgrounds to Single Top

- σ_{s+t} only a factor of ~two lower than σ_{tt}
 - but event signature much less pronounced
 - fewer high p_T objects
- Backgrounds much more of a challenge!
- W+jets poorly understood
 - especially W+heavy flavour
 - considerable tuning of MC to data required

muon

• Even after b-tagging,

..... the signal is swamped by background!

Kinematic Discriminants

- Use multivariate kinematic discriminants
 - e.g., "Neural Network", "Decision Tree"

• Validate on "background-enriched" sub-samples

"W-like" (low total visible E_T)

"tt-like" (very high total visible E_T)

CDF Observation of Single Top Production

- Cut on discriminant selects single top-like background
 - a general feature of such analyses!

Discriminant output distributions

Combination of five lepton+jets+MET analyses

Jets+MET analysis

- Combined significance 5.0 $\sigma_{s+t} = 2.3^{+0.6}_{-0.5}(\text{stat} + \text{syst}) \text{ pb}$

DØ Observation of Single Top Production

- 2.3 fb⁻¹
- Combination of three lepton+jets +MET analyses
- Significance 5.0σ (4.5σ expected)
- σ_{s+t} = 3:94±0:88 (stat + syst) pb

<u>The only direct</u> <u>determination of |V_{tb}|</u>

Combination	Output
-------------	--------

	CDF	DØ
V _{tb}	0:91±0:11	1:07 ± 0:12
V _{tb} @ 95% CL	> 0.71	> 0.78

- Plus, a really important calibration analysis for WH→Ivbb, etc.
 - and will get increasingly precise with more data!

Reminder: Direct Searches for Higgs at LEP2

Searches for the SM Higgs Boson at the Tevatron

"Associated Production": Low mass only, three final states

"Gluon Fusion": Most interesting at intermediate to high masses

Higher cross section

 but can only distinguish from backgrounds with H→WW decay

Also **WH→WWW** interesting at intermediate masses

About 1 in 10¹² proton-antiproton interactions will contain a Higgs "The Higgs is underneath the needle in the haystack!"

Higgs Searches at Low Mass

• Backgrounds very similar to single top!!!

Events / Bin

top pair and single top production, W or Z + jets, "Di-boson" (WW, WZ, ZZ)

Cross Check Samples in ZH→vvbb Analysis

W→µv+jets

"multi-jets"

 Events with one b-tagged jet

Events / 20 GeV

50

40

30

20

10–

Գ

100

50

EW Control sample (two asymmetric btags)

DØ preliminary (5.2 fb

150 200 250 300 DiJet Invariant Mass (GeV)

Diboson

W+jets(I.f.)

W+b/c-jets

Z+jets(I.f.)

Z+b/c-jets

Top

(b)

 Events with two b-tagged jets

Higgs Searches at High Mass

- Look for leptonic decays of WW
- Look at azimuthal angle between the two charged leptons
 - Higgs: small $\Delta \phi$
 - Standard WW events: large $\Delta \phi$

Current CDF+DØ Combined Limits

• In the absence of a signal

- Set a limit on the allowed cross section times branching ratio for Higgs production
 - that is, how large could cross section times branching ratio for Higgs production be before it would have been visible?
- Express limit as a ratio to the cross section expected in the Standard Model

Standard Model Higgs ruled out @ 95% CL if the limit reaches this level!

- Lots of creative work to improve Higgs sensitivity still going on!
- Plus, most non-Higgs analyses also still stats limited, e.g.,
 - $\,M_W$ and other measurements with W & Z $\,$
 - QCD phenomenology of high energy hadron-hadron collisions
 - top properties
 - B_s $\rightarrow \mu\mu$, CP violation search Φ_s

(to do in the next 2-3 years while the LHC experiments are calibrating ;-)

LHC Sensitivity

- Huge EW event samples crucial to commission detector, trigger and event reconstruction
 - in 1 fb⁻¹
 - 1M Z→II events
 - 250k "lepton+jet" tt events

 But it will take <u>a few years</u> of commissioning and "low luminosity" running to achieve this sensitivity!

Backup Slides

M_wSummary of uncertainties

systematic uncertainties

(Source	$\sigma(m_W)$ MeV m_T	$\sigma(m_W)$ MeV p_T^e	$\sigma(m_W) \operatorname{MeV} E_T$
Icertainties	Experimental			
	Electron Energy Scale	34	34	34
	Electron Energy Resolution Model	2	2	3
	Electron Energy Nonlinearity	4	6	7
	W and Z Electron energy	4	4	4
	loss differences (material)			
	Recoil Model	6	12	20
ョノ	Electron Efficiencies	5	6	5
<u>.</u>	Backgrounds	2	5	4
at	Experimental Total	35	37	41
system	W production and			
	decay model			
	PDF	9	11	14
	QED	7	7	9
	Boson p_T	2	5	2
	W model Total	12	14	17
	Total	37	40	44
statist	ical	23	27	23
total		44	48	50

Parameters of The Standard Model

- At the level of simple "tree level" diagrams the EW interactions are determined by three "input" parameters
- Masses of W and Z also given in terms of coupling constants

$$m_W^2 = m_Z^2 \cos^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} G_F \sin^2 \theta_W}$$

- For practical purposes we use as inputs the three most precisely known EW experimental observables:
 - The fine structure constant: $\alpha = e^2/2\varepsilon hc$
 - Fermi constant (measured in muon decay $\mu^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\mu}$): G_F
 - Z mass: m_z
- Adding QCD requires an additional constant:
 - The strong coupling constant: $\alpha_{\rm s}$

- Loops cause running of coupling constants
 - α → α(Q²)
 - $sin^2\theta_W \rightarrow sin^2\theta_W^{eff}$
- EW observables then depend on:
 - α , G_F, m_Z, m_t, m_H
- Basic programme:
 - Measure precisely L and R couplings of each fermion to γ, Z, W
 - Measure precisely boson self-interactions
 - Measure precisely α_s , α , G_F , m_Z , m_t
 - Test consistency of measurements with Standard Model predictions
 - Find the Higgs!
 - (or other new particles beyond the Standard Model)

• a

Anomalous Dimuon Events? (CDF)

(2.1 pb⁻¹, arXiv:0810.5357)

- Muons:
 - p_T > 3 GeV
 - $|\eta| < 0.7$
- Dimuon events:
 - $-5 < M_{\mu\mu} (GeV) < 80$
- Silicon hit requirements:
 - "Loose" (590970 events)
 - ≥3 hits in L0-L4 plus ISL
 - "Tight" (143743 events)
 - hits in L00, L0 plus ≥2 of L1-L4

- Number and properties of "Tight" events consistent with bb, cc, plus Drell-Yan
- Predict number of "Loose" events:
 - N_{Loose} = N_{Tight} / ϵ _{Tight wrt. Loose}
- See an excess of 72553 ± 7264 "Loose" events ("ghosts") with very broad impact parameter distribution

- CDF unable to explain "ghost" events in terms of punch-through/decay in flight
- Other features of "ghost" events
 - Equal numbers of same-sign and opposite-sign
 - Contain anomalous number of additional muons

Anomalous Dimuon Events? (DØ)

0.9 fb⁻¹

http://www-d0.fnal.gov/Run2Physics/ WWW/results/prelim/B/B57/B57.pdf

- Mimic CDF geometrical and kinematic acceptance cuts
- Silicon hit requirements:
 - "Loose"
 - ≥3 silicon hits
 - "Tight"
 - "Loose" plus both tracks have hit in Layer-0 (radius 1.6 cm)

- as function of relevant kinematic variables
- N_{Loose} = 177 535
- N_{Tight} = 149 161
- N_{Excess} = 712 ± 462 (stat) ± 942 (syst)
- or $[0.40 \pm 0.26 \pm 0.53]\%$ of N_{Loose}
- N.B. No correction for any decay in flight or punch through contribution!
- DØ does not confirm CDF observation of anomalous dimuon events with large impact parameters

Top Quark Production and Decay at Tevatron

- Final state determined by decay of the two Ws
- Discovered by CDF and DØ in 1995
- Lifetime ~5 x 10⁻²⁵ s
 - Decays before "hadronization" takes place (timescale ~10⁻²² s)
 - Our only opportunity to study a "bare" quark
- Is the object we see the SM top quark?

Top Mass Measurement

- Reconstruct t quark mass and W→qq mass
 - constrain Jet Energy Scale(JES) at ~1% level!

• CDF have re-analyzed their data (stat. uncertainties only) to allow a direct comparison with DØ

 \sim